izpis_h1_title_alt

Polmer grupe ${\rm SL}_2({\rm F}_p)$ : delo diplomskega seminarja
ID Cerar, Matej (Author), ID Jezernik, Urban (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (601,00 KB)
MD5: 830298BF8A4FE41768E127AD50965FEF

Abstract
V delu omejimo polmer Cayleyjevega grafa grupe ${\rm SL}_2({\rm F}_p)$. V ta namen predstavimo Helfgottov produktni izrek. Obravnavamo nekaj robnih primerov za zelo majhne in zelo velike generirajoče podmnožice grupe ${\rm SL}_2({\rm F}_p)$. Definiramo maksimalne toruse in regularne polenostavne elemente, preko katerih zapišemo izrek o torusni dihotomiji. Uporabimo tudi izrek o Larsen-Pinkovih neenakostih in si podrobneje ogledamo konjugiranostne razrede grupe ${\rm SL}_2({\rm F}_p)$.

Language:Slovenian
Keywords:Helfgottov produktni izrek, torusi, regularni polenostavni elementi
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140815 This link opens in a new window
UDC:512
COBISS.SI-ID:122434051 This link opens in a new window
Publication date in RUL:18.09.2022
Views:1583
Downloads:93
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Diameter of the group ${\rm SL}_2({\rm F}_p)$
Abstract:
In this work, we give an upper bound for the diameter of the Cayley graph of the group ${\rm SL}_2({\rm F}_p)$. For this purpose, we introduce Helfgott's product theorem. We consider some special cases for very small and very large generating subsets of the group ${\rm SL}_2({\rm F}_p)$. We define maximal tori and regular semisimple elements, through which we write down the torus dichotomy theorem. We also present the theorem of Larsen-Pink inequalities and take a closer look at the conjugacy classes of the group ${\rm SL}_2({\rm F}_p)$.

Keywords:Helfgott's product theorem, tori, regular semisimple elements

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back