izpis_h1_title_alt

Enakostranični trikotniki in Jordanove krivulje : delo diplomskega seminarja
ID Zajc, Nejc (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (598,81 KB)
MD5: 13E4E4D3FC5E924261B900A33320822E

Abstract
V diplomski nalogi odgovorimo na vprašanji obstoja in števila enakostraničnih trikotnikov na Jordanovih krivuljah. Osrednji del naloge je namenjen analizi te tematike v ravnini. V nalogi definiramo pojem presečnega števila krivulj in si ogledamo kaj so triode. Z uporabo teh pojmov uspemo pokazati, da kvečjemu dve točki na Jordanovi krivulji nista oglišči nekega enakostraničnega trikotnika, ki ima vsa oglišča na tej krivulji. V drugem delu naloge posplošimo rezultate iz ravnine v prostore višjih dimenzij. Ob koncu si pogledamo še nekatere rezultate glede obstoja kvadrata na ravninski Jordanovi krivulji in pokažemo, da na njej vselej obstaja pravokotnik.

Language:Slovenian
Keywords:enakostranični trikotnik, Jordanova krivulja, presečno število, ravnina, trioda
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140594 This link opens in a new window
UDC:514.7
COBISS.SI-ID:122283011 This link opens in a new window
Publication date in RUL:16.09.2022
Views:916
Downloads:92
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Equilateral triangles and continuous curves
Abstract:
In this work, we give answers to questions regarding the existence and the number of equilateral triangles on Jordan curves. The main part of the work gives these results in the plane. We define the intersection number of two functions and take a look at triods. Using these concepts we show that all but two points on a Jordan curve are vertices of some equilateral triangle on this curve. In the second part we generalize the results from the plane to spaces of higher dimensions. At the end we take a look at some of the results on the topic of squares on Jordan curves. We also show that there always exists a rectangle on a Jordan curve.

Keywords:equilateral triangle, Jordan curve, intersection number, plane, triod

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back