izpis_h1_title_alt

Prirezani momentni problemi in pozitivno semidefinitne napolnitve matrik
ID MARUŠIČ, FILIP (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (396,88 KB)
MD5: 48A1B311398D29D489FC7198FA3454FD

Abstract
Prirezani momentni problem sprašuje po karakterizaciji linearnih funkcionalov na prostoru polinomov dane stopnje, ki jih lahko predstavimo kot integracijo po pozitivni Borelovi meri $\mu$ z nosilcem na dani zaprti podmnožici v $\real^n$. To se lahko rešuje z opazovanjem lastnosti pripadajoče momentne matrike $\mathcal{M}$. V delu se ukvarjamo s primerom dveh spremenljivk. Stolpce matrike $\mathcal{M}$ indeksiramo z monomi $x^i y^j$. Vsak element jedra matrike $\mathcal M$ lahko v tej identifikaciji izrazimo kot simbolno ničelno množico nekega polinoma. V našem pristopu bomo privzeli singularnost matrike $\mathcal{M}$ in se rešili ene od spremenljivk, nato pa reševali pripadajoč enodimenzionalni problem. Zaradi nekaterih manjkajočih momentov v zaporedju bomo ključno uporabili rezultate, ki sledijo z uporabo teorije grafov.

Language:Slovenian
Keywords:momentni problem, semidefinitna hanklova matrika, tetivni graf
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140542 This link opens in a new window
COBISS.SI-ID:124326403 This link opens in a new window
Publication date in RUL:15.09.2022
Views:675
Downloads:68
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Truncated moment problems and positive semidefinite matrix completions
Abstract:
The truncated moment problem asks to characterize linear functionals over the space of polynomials of a given degree, which can be represented as integration over the positive Borel measure $\mu$ with support on a given closed subset of $\real^n$. We can solve this by observing the properties of the corresponding moment matrix $\mathcal{M}$. In this work we are going to study the cases that have two variables. We then label the columns of $\mathcal{M}$ with monomials $x^i y^j$. In this way, every element of the kernel of $\mathcal{M}$ can be expressed as a symbolic zero set of some polynomial. In our approach we will assume that $\mathcal{M}$ is singular and in this way we will get rid of one of the variables. Afterwards we will solve the corresponding one dimensional problem. We are going to crucially rely on some results from graph theory, since there are certain moments in the sequence that are missing.

Keywords:moment problem, semidefinite Hankel matrix, chordal graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back