izpis_h1_title_alt

Kvantizacija globokih opisnikov za kompresijo v robnem računalništvu
ID ŠUŠTAR, GREGA (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,23 MB)
MD5: 1CA6E8BE3DD5C771AC122B3986993A5F

Abstract
V diplomskem delu obravnavamo idejo kvantizacije globokih opisnikov, ki jih vračajo skriti sloji konvolucijskih nevronskih mrež. Cilj pristopa je zmanjšati število bitov in posledično količino informacij, da bi se te hitreje in bolj učinkovito poslali prek mreže na oblak, kjer bi se procesiranje nadaljevalo. To nam bi omogočilo nadzorovano stiskanje vhodnih podatkov, porazdeljeno procesiranje med dvema sistemoma in morda celo delno anonimizacijo surovih podatkov. V okviru dela smo izvedli eksperiment z modelom za kategorizacijo, ki smo ga učili na dveh standardnih zbirkah slik. Rezultati eksperimenta kažejo, da je tak razcep obdelave slike mogoč. Količina podatkov za prenos kvantiziranih opisnikov je nižja kot v primeru uporabe brezizgubnega slikovnega kodeka. V diskusiji opišemo tudi pomanjkljivosti zasnove našega eksperimenta in podamo predloge za nadaljnje raziskave na tem področju.

Language:Slovenian
Keywords:nevronske mreže, globoko učenje, kvantizacija, robno računalništvo
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140541 This link opens in a new window
COBISS.SI-ID:123688963 This link opens in a new window
Publication date in RUL:15.09.2022
Views:749
Downloads:81
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Quantization of deep descriptors for compression in edge computing
Abstract:
In this thesis, we discuss the idea of quantizing deep descriptors returned by the hidden layers of convolutional neural networks. The aim of this approach is to reduce the number of bits and, consequently the amount of information in order to send this information more quickly and efficiently through the network to the cloud, where the processing would continue. This would allow us to compress the input data in a controlled way, distribute the processing between the two systems and perhaps even to partially anonymise the raw data. In the scope of our thesis, we ran an experiment with a categorisation model trained on two standard image collections. The results of the experiment show that such a split of image processing is possible. The amount of data for transfering the quantized descriptors is lower than in if we were to use a lossless image codec. In the discussion, we also describe the shortcomings of our experimental design and make suggestions for further research in this area.

Keywords:neural networks, deep learning, quantization, edge computing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back