izpis_h1_title_alt

Detekcija terasiranih pokrajin kot semantična segmentacija digitalnega modela višin
ID GLUŠIČ, ANŽE (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Ciglič, Rok (Comentor)

.pdfPDF - Presentation file, Download (19,41 MB)
MD5: 6B328FF65DBB221C7F5DDDDB012C6B35

Abstract
Slovenska pokrajina je široka, raznolika in prebivalstvu nudi tako kulturne kot tudi kmetijske funkcionalnosti. Temu služijo tudi terasirane pokrajine, ki so svetovno prepoznane kot pomembni naravni in kulturni element naše okolice. Ker Slovenija še nima ustreznega kriterija za razpoznavanje teh teras, v diplomskem delu preučujemo možnost načina klasificiranje takih pobočij s pomočjo semantične segmentacije z globokimi konvolucijskimi nevronskimi mrežami. Za detekcijo smo uporabili javno dostopne podatke LIDAR digitalnega modela višin, na katere smo aplicirali enostaven globoki klasifikacijski model z arhitekturo U-Net. Referenčni podatki so bili anotirani s strani strokovnjakov, vendar so anotacije nenatančne in pomanjkljive. Dosežen napovedni model smo naučili dobro locirati terasirane pokrajine. Doprinesel je tudi nova spoznanja o terasiranih pokrajinah in referenčnih podatkih, ki bodo v korist slovenskim geografom. Prikazali smo tudi rezultate, ki prikazujejo, da je, kljub šumnim podatkom, detekcija takih pokrajin možna z globokimi modeli in predstavlja odskočno desko za nadaljnje raziskave v smeri izboljšanja njihove zaznave.

Language:Slovenian
Keywords:terase, digitalni model višin, semantična segmentacija, umetna inteligenca, strojno učenje, LIDAR
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140540 This link opens in a new window
COBISS.SI-ID:123820035 This link opens in a new window
Publication date in RUL:15.09.2022
Views:762
Downloads:250
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detection of terraced landscapes as a semantic segmentation of a digital elevation model
Abstract:
The Slovenian landscape is wide, diverse and above all offers cultural as well as agricultural functionalities to the population. Terraced landscapes contain an abundance of cultural as well as functional importance and must be identified and preserved. Since Slovenia does not yet have an adequate criterion for the identification of these terraces, we present in a way of classifying them by means of semantic segmentation with deep convolution neural network. For detection, we used the publicly available digital elevation model (LIDAR), where a simple detection model with U-Net architecture was trained. The reference data have been annotated by experts, but the annotations are inaccurate and flawed. The model managed to learned to locate terraced landscapes, which offered insights about terraced landscapes and reference data that will benefit Slovenian geographers. The results also show that, despite the noise data, detection of such landscapes is possible and represents a stepping stone for further research towards improving their detection.

Keywords:terraces, digital elevation model, semantic segmentation, artificial inteligents, machine learning, LIDAR

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back