izpis_h1_title_alt

Dinamične lastnosti nadomestnih dinamičnih sistemov
ID Pavšek, Aljaž (Author), ID Horvat, Martin (Mentor) More about this mentor... This link opens in a new window, ID Kocijan, Juš (Comentor)

.pdfPDF - Presentation file, Download (4,06 MB)
MD5: D238B42A919161D559A9817B51400586

Abstract
V preteklosti so bile gibalne enačbe različnih fizikalnih sistemov ugotovljene in podane na podlagi dolge zgodovine zaporednih meritev obravnavanega sistema in veliko človeške intuicije, danes pa je zaradi kompleksnosti opazovanih fenomenov in vedno bolj zmogljivih računalnikov to pogosto prepuščeno računalniškim algorit- mom. Ko iz meritev preko numeričnega postopka dobimo gibalne enačbe, pravimo, da smo določili nadomestni model opazovanega sistema. Uspešnost nadomestnih modelov se pogosto vrednoti glede na njihove napovedne zmožnosti tj. kako na- tančno in za kako dolge čase simulacij bodo napovedi nadomestnih modelov dovolj dobro aproksimirale realne podatke. V tej magistrski nalogi smo se posvetili še enemu pomembnemu aspektu vrednotenja nadomestnih modelov in sicer, opazovali smo, kako se dinamične lastnosti (kot so npr. eksponenti Ljapunova) nadomestnih modelov razlikujejo od prvotnega modela oz. sistema, ki je vir numeričnih podatkov. Natančneje, ugotavljali smo, kako na dinamične in statistične lastnosti nadomestnih modelov vpliva amplituda belega gaussovskega šuma, ki je bil predhodno prištet numeričnim podatkom, katerim smo prilagajali nadomestne modele. Za izvorni di- namični sistem smo si konkretno izbrali Lorenzov model tipa II iz leta 2005, ki je pomemben poenostavljen fizikalni model na področju meteorologije in ki ima dinamiko omejeno na končen volumen faznega prostora. Nadomestne modele smo pridobili z regresijskim algoritmom SINDy, ki predstavlja enega od perspektiv- nih algoritmov za iskanje nadomestnih enačb gibanja iz časovnih zaporedij sistemov. Ugotovili smo, da se dinamične lastnosti nadomestnih modelov precej dobro ujemajo z dinamičnimi lastnosti izvornega sistema. Ta ugotovitev velja v območju amplitud podatkom prištetega šuma, kjer nadomestni modeli ne generirajo trajektorij, ki oči- tno niso omejene na končen volumen faznega prostora. Poleg tega smo opazili, da z večanjem amplitude podatkom prištetega šuma dinamika nadomestnih modelov po- stajajo vedno manj kaotična. Izvedli smo tudi analizo variance prostih parametrov nadomestnih modelov in ugotovili, so od majhnih naključnih perturbacij vhodnih podatkov prosti parametri modela večinoma odvisni posamično.

Language:Slovenian
Keywords:Dinamični sistem, SINDy, regresija, Lorenzov model, atraktor, eksponenti Ljapunova, dinamične lastnosti, nadomestni modeli, učenje modelov, analiza variance
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140307 This link opens in a new window
COBISS.SI-ID:121136643 This link opens in a new window
Publication date in RUL:14.09.2022
Views:781
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Dynamical properties of surrogate dynamical systems
Abstract:
When the equations of motion are obtained from the measurements via a numer- ical procedure, we say that we have determined a surrogate model of the observed system. The performance of surrogate models is often evaluated in terms of their predictive capability, i.e. how well and for how long simulation time the predictions of the surrogate models will approximate the real data. In this MSc thesis, we have focused on another important aspect of the evaluation of surrogate models, namely, we have studied how the dynamic properties (such as Lyapunov exponents) of sur- rogate models differ from the original model i.e. system that is the source of the numerical data. Specifically, we looked at how the dynamic and statistical prop- erties of the surrogate models are affected by the amplitude of the white Gaussian noise that was previously added to the numerical data to which the surrogate models were fitted. We chose the 2005 Lorenz type II model as the source dynamical system, which is an important toy model in the field of meteorology. Surrogate models were obtained using the regression method SINDy, which is one of the promising algorithms for finding alternative equations of motion from time series of systems. We found that the dynamic properties of the surrogate models match the dynamic properties of the original system reasonably well in the range of ampli- tudes of the data-added noise, where the surrogate models do not generate divergent (unbounded) trajectories. Furthermore, we observed that as the amplitude of the data-added noise increases, the dynamics of the surrogate models become less and less chaotic. We also performed a variance analysis of the free parameters of the surrogate models and found that, the free parameters of the model are mostly indi- vidually dependent on small random perturbations of the input data.

Keywords:Dynamical system, SINDy, regression, Lorenz model, attractor, Lyapunov exponents, dynamical properties, surrogate models, model learning, variance analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back