izpis_h1_title_alt

Uporaba metod strojnega učenja za hitro ekstrapolacijo sledi delcev v detektorjih na Velikem hadronskem trkalniku
ID Špenko, Krištof (Author), ID Kerševan, Borut Paul (Mentor) More about this mentor... This link opens in a new window, ID Pestotnik, Rok (Comentor)

.pdfPDF - Presentation file, Download (7,08 MB)
MD5: ECEEF9892EED540972829CE96AAA1854

Abstract
V obdobju “Run 3” delovanja Velikega hadronskega trkalnika LHC je zajem podatkov za iskanje procesov nove fizike velikanski. Za zadovoljivo natančne meritve je potrebna zelo kompleksna računalniška rekonstrukcija dogodkov trkov v detektorjih, kjer enega največjih izzivov predstavlja rekonstrukcija sledi nabitih delcev. Poleg natančnosti postopkov rekonstrukcije sledi je bistvena tudi hitrost algoritmov, saj le-ta omejuje količino podatkov, ki jo lahko zajamemo. Obetavno nadgradnjo obstoječih postopkov rekonstrukcije sledi, ki temelji na funkcijskih algoritmih, predstavlja uporaba metod strojnega učenja ter implementacija novih metod na najmodernejših računalniških arhitekturah (GPU - grafične kartice). Za razvoj tovrstnih algoritmov je nujno potrebno razumevanje fizikalnega ozadja, od interakcije delcev s snovjo v detektorju do razumevanja same kinematike iskanih fizikalnih procesov, kot jih napoveduje Standardni model in različni modeli nove fizike. Uspeh postopkov in dosegljive izboljšave je potrebno tudi preveriti na obstoječih podatkih, zajetih na LHC. Cilj magistrskega dela je iskanje in razvoj alternativnih ekstrapolatorskih metod za rekonstrukcijo trajektorij nabitih delcev v magnetnem polju. V ta namen predstavimo tri metode, ki temeljijo na funkcionalni napovedi trajektorij, s čimer se izognemo počasni adaptivni numerični integraciji in omogočimo uporabo zasnovanih algoritmov na najnovejših računalniških arhitekturah. Prva metoda, t.i. parametrizirani ekstrapolator temelji na perturbativnem razvoju popravkov okoli idealnih trajektorij, ki izvirajo točno iz izhodišča. Druga metoda SVD je več-dimenzionalni funkcionalni nastavek, kjer prilagajanje prostih parametrov temelji na zelo osnovnem pristopu učenja na velikem učnem naboru trajektorij preko minimizacije χ^2. Kot zadnjo metodo predstavimo pravo metodo strojnega učenja metodo GPR, pri kateri na podlagi majhnega nabora učnih trajektorij modeliramo korelacije med meritvami in preko njih opišemo verjetnostno porazdelitev napovedi. Na koncu magistrske naloge vse tri metode testiramo in preverimo, da so njihovi izračuni napovedi dovolj natančni za zanesljivo rekonstrukcijo sledi delcev.

Language:Slovenian
Keywords:strojno učenje, regresija z Gaussovimi procesi, osnovni delci, ekstrapolacija, regresija, magnetno polje, detektorji delcev, rekonstrukcija, sledi delcev, dipol
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140306 This link opens in a new window
Publication date in RUL:14.09.2022
Views:535
Downloads:124
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Application of machine learning methods for fast particle track extrapolation in the detectors at the Large Hadron Collider
Abstract:
During the “Run 3” period of operation of the Large Hadron Collider LHC, the acquisition of data is gigantic. For accurate measurements, a complex computer reconstruction of the collision events is required, where the reconstruction of particle tracks is one of the biggest challenges. In addition to the accuracy of the track reconstruction procedures, the speed of the algorithms is also essential, as this limits the amount of data that can be captured. The use of machine learning methods and the implementation of new methods on modern computer architectures (GPU - graphical processing unit) show great promise in upgrading existing track reconstruction procedures. The development of such algorithms requires an understanding of the physical background of the problem, from the interaction of particles with matter in the detector to the understanding of the kinematics of the physical processes, as predicted by the Standard Model and possible new physics processes. The success of the procedures must also be checked based on the existing data collected at the LHC. The goal of the master thesis is to find and develop alternative extrapolation methods for the accurate reconstruction of charged particle tracks in the magnetic field. For this purpose, we present three methods based on functional predictions of state vectors, with which we avoid the slow adaptive numerical integration. The first method is called the parametrized extrapolator and it works as a perturbative expansion around ideal tracks, which come exactly from the origin. The second method is based on a multi-dimensional functional ansatz whose parameters we fit by minimizing the χ^2 on a large dataset by using SVD. The last is the GPR method, which fits correlations between sparse measurements, by which it then constructs a probability distribution around the most probable outcome. In the end, we implement and test all three methods and check that they are able to replicate the required accuracy.

Keywords:machine learning, Gaussian process regression, elementary particles, extrapolation, regression, magnetic field, particle detectors, reconstruction, particle tracks, dipole

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back