izpis_h1_title_alt

Napovedovanje prodaje novih izdelkov v FMCG sektorju
ID VATOVEC, MATEJ (Author), ID Možina, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (586,03 KB)
MD5: D9E15354AF2A07215D8EAD0B6BC243A4

Abstract
Življenjski cikel novih izdelkov je vedno krajši, zato igra pomembno vlogo napovedovanje prodaje. Prve ocene prodaje so zelo pomembne za podjetja, saj usmerjajo podjetje pri planiranju kapacitet in nadzoru zalog. Cilj diplomske naloge je napovedati prodajo novih izdelkov v FMCG sektorju. Najprej smo pridobili primerne podatke in jih preoblikovali v ustrezno obliko za modeliranje. Problem smo rešili s pomočjo metode DemandForest in jo implementirali na različnih številih skupin. Poleg točne napovedi prodaje metoda vrne tudi napovedni interval. Ugotovili smo, da metoda napoveduje bolje kakor benchmark metoda.

Language:Slovenian
Keywords:strojno učenje, FMCG, python, napovedovanje povpraševanja, novi izdelki
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140249 This link opens in a new window
COBISS.SI-ID:121595395 This link opens in a new window
Publication date in RUL:13.09.2022
Views:962
Downloads:64
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:New product sales forecasting in the FMCG segment
Abstract:
Companies nowadays have to deal with shorter product life cycles, which increases the need to properly forecast demand for new products. Forecasts allow them to make operational decisions, such as procurement and inventory control. The main purpose of the thesis is to forecast sales of new products in the FMCG sector. Firstly, we acquired access to appropriate data and transformed it so that it can be used in different machine learning models. We solved the problem by implementing a method called DemandForest. Besides point forecasts the method can establish prediction intervals. We evaluated DemandForest multiple times with different number of clusters. On the basis of our experimental results, we discovered that DemandForest provides more accurate results than the benchmark method.

Keywords:machine learning, FMCG, python, forecasting demand, new product

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back