izpis_h1_title_alt

Kaos v diskretnih dinamičnih sistemih
ID Rogan, Adrijan (Author), ID Drinovec Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window, ID Boc Thaler, Luka (Comentor)

.pdfPDF - Presentation file, Download (2,28 MB)
MD5: 268CF74F4F886E65AD519B39C4425B17

Abstract
V delu raziščemo kaos v diskretnih dinamičnih sistemih. Najprej definiramo splošne dinamične sisteme in vpeljemo iteracijo preslikave kot klasični zgled diskretnega dinamičnega sistema. Opišemo tri zahteve, ki določajo kaotične diskretne dinamične sisteme: občutljivost na začetne pogoje, gostost periodičnih točk in topološka tranzitivnost. Ogledamo si družino šotorskih preslikav $T_\mu$ v odvisnosti od parametra $\mu > 0$ in raziščemo njihovo dinamiko. Pri določenih parametrih $\mu$ je dinamični sistem, porojen z iteriranjem preslikave $T_\mu$, kaotičen. Za parameter $\mu = 2$ dokažemo, da sistem zadošča zahtevam kaotičnih dinamičnih sistemov. Za parametre $\mu > 2$ vpeljemo simbolni prostor $\Sigma_2$ in pokažemo, da je pomik $\sigma$ kaotična preslikava. Nato definiramo preslikavo, ki je topološka konjugacija med $T_\mu$ in $\sigma$ in pokažemo, da ohranja kaotičnost.

Language:Slovenian
Keywords:diskretni dinamični sistem, kaos, šotorska preslikava, Cantorjeva množica, topološka konjugacija, simbolna dinamika
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140248 This link opens in a new window
COBISS.SI-ID:121780739 This link opens in a new window
Publication date in RUL:13.09.2022
Views:1130
Downloads:69
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Chaos in discrete dynamical systems
Abstract:
In this diploma thesis, we explore chaos in discrete dynamical systems. First, we define dynamical systems in general and introduce an iterated map as the prototypical example of a discrete dynamical system. We describe the three conditions that define chaotic discrete dynamical systems: sensitive dependence on initial conditions, dense periodic points and topological transitivity. Then, we examine the dynamics of the one-parameter family of tent maps $T_\mu$ where $\mu > 0$ and show that the dynamic system arising from iterating $T_\mu$ is chaotic for some parameters $\mu$. For $\mu = 2$, we directly check that the system meets criteria for chaotic systems. For $\mu > 2$, we introduce the symbol space $\Sigma_2$ and show that the shift map $\sigma$ is chaotic. We then define a map that is a topological conjugacy between $T_\mu$ and $\sigma$ and show that it preserves chaoticity.

Keywords:discrete dynamical system, chaos, tent map, Cantor set, topological conjugation, symbolic dynamics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back