Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Detecting depression from social networks using natural language processing
ID
TAVCHIOSKI, ILIJA
(
Author
),
ID
Robnik Šikonja, Marko
(
Mentor
)
More about this mentor...
,
ID
Pollak, Senja
(
Comentor
)
PDF - Presentation file,
Download
(380,98 KB)
MD5: 93AECB731208C5529AAF6010036D8F7E
Image galllery
Abstract
The rapid technological advances in the past two decades have drastically affected our society's behavior, culture, and lifestyle. Social media, as one of the many products of this phenomenon, become an essential part of our lives as a tool for communication and expression. Social media become a popular choice for people to share information with the community, such as their thoughts and feelings on various matters in their lives. This especially can be observed in people with mental health issues, such as depression. They often prefer to express their strong feelings or ask for advice on social media. Social media posts also offer a possibility for automatically detecting signs of depression. In this thesis, we present the solution to this problem using natural language processing methods on two different data sets which are composed of posts from the social platforms Reddit and Twitter. We propose using large pre-trained models such as the BERT model and the use of transfer learning between the two data sets. We additionally improved the results by creating an ensemble of several combinations of transformer-based models pre-trained on different domains.
Language:
English
Keywords:
Natural Language Processing
,
Transformers
,
Depression Detection
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2022
PID:
20.500.12556/RUL-140245
COBISS.SI-ID:
123092995
Publication date in RUL:
13.09.2022
Views:
1183
Downloads:
201
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
TAVCHIOSKI, ILIJA, 2022,
Detecting depression from social networks using natural language processing
[online]. Bachelor’s thesis. [Accessed 11 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=140245
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Detekcija depresije na družbenih omrežjih z metodami obdelave naravnega jezika
Abstract:
Hiter tehnološki razvoj v zadnjih dveh desetletjih je močno vplival na vedenje, kulturo in življenjski slog družbe. Družbeni mediji, ki so eden izmed rezultatov tega fenomena, so postali ključen del naših življenj in pomembno orodje za komunikacijo in izražanje. Postali so priljubljen način, da ljudje s skupnostjo delijo informacije, na primer svoje misli in vprašanja o različnih zadevah svojega življenja. To lahko opazimo tudi pri osebah s težavami v duševnem zdravju, kot je depresija, ki družbene medije pogosto uporabljajo za izražanje svojih čustev ali tam prosijo za nasvete. Objave na družbenih omrežjih lahko služijo tudi za avtomatsko zaznavanje znakov depresije. V diplomskem delu predstavimo možne rešitve te naloge z uporabo metod za obdelavo naravnega jezika. Uporabimo dve različni zbirki podatkov, ki sta sestavljeni iz objav na družbenih platformah Reddit in Twitter. Predlagamo uporabo velikih prednaučenih jezikovnih modelov, kot je model BERT in uporabo učenja s prenosom znanja med zbirkami podatkov. Rezultate dodatno izboljšamo z uporabo ansamblov z različnimi kombinacijami modelov, ki temeljijo na transformerjih, prednaučenih na različnih domenah.
Keywords:
obdelava naravnega jezika
,
transformerji
,
zaznavanje depresije
Similar documents
Similar works from RUL:
Children’s folk music in second age in kindergarten
Interpretation Oton Župančič's poems in preschool
Discussing and recreating selected folk songs from Štrekelj's collection Slovenian folk songs in the third grade
Discussion about folk and authorial songs in preschool
Dealing with problem topics in preschool period: Babette Cole
Similar works from other Slovenian collections:
FOLK MUSICAL HERITAGE IN PREKMURJE KINDERGARTENS
Humour in the anthologies Encibenci na kamenci
Otroška ljudska pesem in glasbila pri glasbenih dejavnostih v kombiniranem oddelku otrok, starih od enega do šest let
Children folk songs from the Štrekelj's legacy
Back