izpis_h1_title_alt

Prepoznava poplavnih območij iz satelitskih posnetkov Sentinel-2 z modeli konvolucijskih nevronskih mrež : magistrsko delo št.: 155/II. GIG
ID Skledar, Primož (Avtor), ID Oštir, Krištof (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Grigillo, Dejan (Komentor), ID Dougan, Jernej Nejc (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (6,90 MB)
MD5: 04A63D0F16F74E1B2FDE78BB97E7CA7F

Izvleček
Konvolucijske nevronske mreže so v zadnjem desetletju v zelo velikem razvoju in se uporabljajo na skoraj vseh področjih znanosti. Pri nalogah prepoznave poplavnih območij se v veliki meri uporabljajo nevronske mreže, ki zagotavljajo avtomatizirano prepoznavo le teh z zanesljivimi rezultati. Ti rezultati so pomembni za ocenjevanje škode in pri načrtovanju obnove poplavnega območja. V raziskavi sem uporabil dva modela konvolucijske nevronske mreže, in sicer MobileNetV2 in dve stopnji EfficientNet. Za učenje modela sem uporabil podatke satelita Sentinel-2. Za ločevanje poplavljenega in nepopravljenega območja sem izdelal lastno zbirko oznak. Izdelali smo program, ki se uporablja za predobdelavo podatkov in učenje modelov. Uporabljene modele sem testiral s spreminjanjem hiperparametrov. Prav tako sem izvedel test spreminjanja po nivoju produkta in izbiro kanalov satelita Sentinel-2. V tretjem delu testiranj sem izboljšal rezultat zgolj z bogatenjem količine podatkov. Po vsakem testiranju sem podatke analiziral in pridobil optimiziran model, kot rezultat, ki je sposoben uspešno prepoznati poplavno območje. V izbranem GMS-GIS-u sem uporabil izdelano metodo in jo preizkusil na novih podatkih.

Jezik:Slovenski jezik
Ključne besede:geodezija, magistrska dela, GIG, strojno učenje, semantična segmentacija, konvolucijska nevronska mreža, hiperparametri, binarna klasifikacija, MobileNetV2, EfficientNet, Sentinel-2, poplave
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Kraj izida:Ljubljana
Založnik:[P. Skledar]
Leto izida:2022
Št. strani:XI, 74 str.
PID:20.500.12556/RUL-140081-0ebbd34c-d210-9b72-559f-9660b2de7396 Povezava se odpre v novem oknu
UDK:528.7:556.531/.532(043.3)
COBISS.SI-ID:125106435 Povezava se odpre v novem oknu
Datum objave v RUL:10.09.2022
Število ogledov:915
Število prenosov:153
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Detection of flooded areas from satellite imagery Sentinel-2 with convolutional neural network models : master thesis no.: 155/II. GIG
Izvleček:
Convolutional neural networks have developed a lot over the past decade and are used in almost all fields of science. Neural networks are already used to a large extent for detecting flooded area and provide automated detection with reliable results. These are important for assessing damage and planning the reconstruction of the flood areas. In the study, I used two models of the convolutional neural network MobileNetV2 and two stages of EfficientNet. For learning models, I used Sentinel-2 satellite data. To separate the flooded and not flooded areas, I created my own collection of annotations. We have developed a program that we use to pre-process data and learn models. The models used were tested by changing the hyperparameters. I also performed a product-level change test and a selection of Sentinel-2 satellite channels. In the third part of the tests, I improved the results only by enriching the amount of data. After each test, I analyzed the data and obtained an optimized model as a result that can successfully detect the flooded area. In the selected GMS-GIS, I used the developed method and tested it on new data.

Ključne besede:geodesy, master thesis, machine learning, semantic segmentation, convolutional neural network, hyperparameters, binary classification, MobileNetV2, EfficientNet, Sentinel-2, floods

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj