izpis_h1_title_alt

Sistem za razpoznavo igralnih kart na osnovi globokega učenja
ID Čampelj, Matej (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (40,35 MB)
MD5: 56BAF8DF474CCEAC49ECAA43231AD814

Abstract
Osrednji problem avtomatizacije namiznih iger s kartami je prepoznavanje kart, ki je kompleksna operacija in potrebuje veliko učno množico. Zaradi izboljšav GPU računalnikov lahko te izdelujemo sintetično z uporabo knjižnic, kot je OpenCV. Osredotočili smo se na prepoznavnje kart igre Tarok z namenom avtomatizacije štetja točk po partiji. Napisali smo program, ki prepoznava poljubno število kart preko kamere, shranjuje njihova imena, sešteva njihove točke in preverja bonuse. Uporabili smo detekcijski algoritem YOLO, naučen na umetni množici. Njegova natančnost je bila preverjena in izboljšana s pomočjo realnih slik.

Language:Slovenian
Keywords:globoko učenje, slikovni sistemi, prepoznavanje objektov, Tarok, YOLO, OpenCV
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[M. Čampelj]
Year:2022
Number of pages:Vii, 23 f.
PID:20.500.12556/RUL-140070 This link opens in a new window
UDC:004.932:004.85(043.2)
COBISS.SI-ID:133565699 This link opens in a new window
Publication date in RUL:10.09.2022
Views:754
Downloads:191
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep learning-based playing card recognition system
Abstract:
The main problem of the automation of board games with cards is card recognition, which is a complex operation and needs a large learning dataset. Due to improvements in computer GPUs, these can be generated synthetically using libraries, such as OpenCV. We focused on the recognition of the cards of the Tarock card game with the aim of automating the counting of points after the game. We wrote a program that recognizes any number of cards through the camera, stores their names, adds up their points and checks for bonuses. We used the YOLO detection algorithm, which has been trained on an artificial dataset. Its accuracy has been checked and improved upon using real pictures.

Keywords:deep learning, imaging systems, object recognition, Tarock, YOLO, OpenCV

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back