izpis_h1_title_alt

Kvadratna cela števila : delo diplomskega seminarja
ID Majhenič, Ajda (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (187,97 KB)
MD5: 79715E12F0B12792E9EC80A273FAB92D

Abstract
V teoriji števil so kvadratna cela števila posploševanje običajnih celih števil na kvadratna polja. Kvadratna cela števila so algebrska cela števila druge stopnje, to so rešitve enačb oblike $x^2 + bx + c = 0$ s celimi števili $b$ in $c$. Preprosta primera kvadratnih celih števil sta kvadratni koren racionalnih števil, kot na primer $\sqrt 2$, in kompleksno število $i = \sqrt –1$, ki generira Gaussova cela ševila. Vsak element kolobarja kvadratnih celih števil, razen $0$ in obrnljivih elementov, se da razcepiti na praelemente v kolobarju kvadratnih celih števil. Nekateri se dajo razcepiti enolično (do vstavljanja obrnljivih elementov in do vrstnega reda faktorjev), drugi pa ne.

Language:Slovenian
Keywords:kolobarji, faktorizacija, polja, glavni kolobarji, kolobarji kvadratnih celih števil, praelementi
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-140054 This link opens in a new window
UDC:511
COBISS.SI-ID:120953091 This link opens in a new window
Publication date in RUL:10.09.2022
Views:738
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Quadratic Integer Rings
Abstract:
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form $x^2 + bx + c = 0$ with $b$ and $c$ (usual) integers. Common examples of quadratic integers are the square roots of rational integers, such as $\sqrt 2$, and the complex number $i = \sqrt –1$, which generates the Gaussian integers. Every element of a quadratic integer ring, apart from $0$ and units, has a factorization into primes in a quadratic integer ring. For some, the factorization is unique (up to insertion of units and the order of factors), and for the others it is not.

Keywords:rings, factorization, fields, principal ideal domains, quadratic integer rings, primes

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back