izpis_h1_title_alt

Analiza in iskanje podobnosti med avdio podpisi zvočnih posnetkov
ID Patačko Koderman, Žiga (Author), ID Pesek, Matevž (Mentor) More about this mentor... This link opens in a new window, ID Marolt, Matija (Comentor)

.pdfPDF - Presentation file, Download (3,34 MB)
MD5: 21158CAD8E1AD53F23F20ADF67C6F756

Abstract
Namen diplomskega dela je razvoj sistema za avdio podpisovanje in razpoznavo posnetkov glasbe. Avdio podpisovanje se uporablja za primerjavo zvočnih posnetkov in je bolj ali manj odporno na šum ter druge motnje iz okolja. V okviru diplomskega dela smo raziskali obstoječe sisteme za avdio podpisovanje, podrobno opisali razviti sistem ter ga evalvirali. Z njim smo indeksirali 900 glasbenih del (54 ur posnetkov) in izmerili njegovo točnost razpoznave glasbe, hitrost indeksiranja, hitrost razpoznave posnetkov ter prostorsko zahtevnost. Sistem je dovolj hiter in točen za uporabo v manjših aplikacijah, kot sta deduplikacija arhivskih posnetkov in razpoznava glasbe, predvajane po radiu. Sistem pričakovano dosega slabše rezultate pri razpoznavi glasbe, posnete v živo, zato za tovrstno uporabo ni primeren.

Language:Slovenian
Keywords:razpoznava glasbe, avdio podpisovanje, vektorska podatkovna baza, spektrogram
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-140030 This link opens in a new window
COBISS.SI-ID:122827523 This link opens in a new window
Publication date in RUL:09.09.2022
Views:732
Downloads:89
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis and similarity comparison between signatures of audio recordings
Abstract:
This thesis aims to develop a system for audio fingerprinting and recognition of recorded music. Audio fingerprinting is a process used to compare audio recordings regardless of noise or other environmental factors. Throughout this work, we explore several audio fingerprinting methods and provide a detailed description of the developed system. The system was used to index 900 songs (54 hours of recorded music) and evaluate its accuracy, indexing speed, query speed, and spatial consumption. The system is found to be sufficiently fast and accurate for use in smaller applications like archive deduplication and recognition of songs played over the radio. However, it lacks sufficient accuracy to be used to identify music played in noisy environments.

Keywords:recognition of music, audio fingerprinting, vector database, spectrogram

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back