izpis_h1_title_alt

Genske različice v interakcijskih mestih na ravni strukturnega interaktoma.
ID Recer, Karmen (Author), ID Konc, Janez (Mentor) More about this mentor... This link opens in a new window, ID Kunej, Tanja (Comentor)

.pdfPDF - Presentation file, Download (5,26 MB)
MD5: 4F5CB965DEC8BB63BCB44B987725143C

Abstract
Proteinske interakcije so vpletene v večino celičnih funkcij, pri čemer se v aktivna mesta proteinov vežejo ligandi ter vplivajo na strukturo in funkcije molekul. Raziskali smo povezavo med interakcijami in patogenostjo na osnovi polimorfizmov posameznih nukleotidov (SNP jev). Delo je potekalo in silico na strežniku GenProBiS, ki omogoča napovedovanje in vizualizacijo interakcijskih mest, ligandov in genskih različic. Programska koda je spisana v jeziku Python, za povezovanje bioloških podatkov smo napisali poizvedbo SPARQL. Uporabili smo podatke iz zbirk PDB, Uniprot, Ensembl, ClinVar, DisGeNET in WikiPathways. Frekvence pojavnosti SNP jev smo analizirali s Fisherjevim eksaktnim testom. SNP ji v mestih molekularnih interakcij so se izkazali kot 2,72 krat bolj verjetno patogeni od tistih izven interakcijskih mest, odstotek patogenih SNP jev v interakcijskih mestih je naraščal (od 62,8 % do 91,1 %) s stopnjo evolucijske ohranjenosti. V referenčnem zaporedju smo ugotovili najvišji odstotek patogenosti pri triptofanu (95,1 %) in cisteinu (89,6 %), največkrat je bil zamenjan arginin. Visoko razmerje obetov za patogenost SNP-jev je bilo ugotovljeno v interakcijskih mestih za ione (10,10), kofaktorje (6,77) in nukleinske kisline (5,66); glikani niso imeli značilnega vpliva (0,98). Za vsak tip liganda smo prikazali po en primer v 3D strukturi. Višja patogenost SNP jev v interakcijskih mestih z vodo kot edinim ligandom kaže na spregledano pomembnost interakcij proteinov z vodo. Opazili smo velik vpliv kriterijev za izbor podatkov na velikost in raznolikost vzorca. Delo predstavlja najobsežnejšo analizo patogenosti SNP-jev glede na aminokislinsko sestavo in napovedane ligande do sedaj ter prvo analizo vpliva vodnih molekul na proteinske interakcije s stališča SNP-jev, ki bo omogočila nadaljnje raziskave patogeneze pri človeku na ravni strukturne interaktomike.

Language:Slovenian
Keywords:bioinformatika, proteogenomika, strukturna interaktomika, SNP, interakcijska mesta
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:BF - Biotechnical Faculty
Year:2022
PID:20.500.12556/RUL-139946 This link opens in a new window
COBISS.SI-ID:125272323 This link opens in a new window
Publication date in RUL:09.09.2022
Views:665
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Genetic variants in interaction sites on the structural interactome level.
Abstract:
Protein interactions are involved in most cellular functions, with ligands binding to active sites and affecting the structure and function of molecules. We investigated the relationship between interactions and pathogenicity based on single nucleotide polymorphisms (SNPs). The work was carried out in silico on the GenProBiS server, which allows the prediction and visualization of binding sites, ligands, and genetic variants. The code is written in Python programming language, and a SPARQL query was constructed to integrate the biological data from various sources. Data were collected from PDB, Uniprot, Ensembl, ClinVar, DisGeNET and WikiPathways. SNP frequencies were analyzed by Fisher's exact test. SNPs in binding sites proved to be 2.72 times more likely pathogenic than those outside binding sites, and the percentage of pathogenic binding SNPs increased (from 62.8% to 91.1%) with the degree of evolutionary conservation. In the reference sequence, the highest percentage of pathogenicity was found for tryptophan (95.1%) and cysteine (89.6%), and arginine was replaced the most frequently. High odds ratios for SNP pathogenicity were obtained in binding sites for ions (10.10), cofactors (6.77), and nucleic acids (5.66); glycans had no significant effect (0.98). For each ligand type, a 3D visualization example was shown. Higher SNP pathogenicity in binding sites with water being the only ligand suggest the overlooked importance of protein-water interactions. A large impact of the data selection criteria on the size and diversity of the sample was observed. This work presents the most comprehensive analysis of the SNP pathogenicity in terms of amino acid composition and predicted ligands to date, and the first SNP-based analysis of the water molecule influence on protein interactions, which will allow further research on human pathogenesis on the structural interactomics level.

Keywords:bioinformatics, proteogenomics, structure interactomics, SNP, binding sites

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back