izpis_h1_title_alt

Učenje parkiranja avtomobila v simulatorju z algoritmom DDPG
ID ROZMANIČ, TINE (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,41 MB)
MD5: E39555552549BFD8D0D516AF0DEC77E1

Abstract
Diplomska naloga raziskuje problem parkiranja avtomobila v simulatorju s pomoˇcjo algoritma spodbujevanega uˇcenja DDPG. V nalogi se spoznamo s teoretiˇcno podlago spodbujevanega uˇcenja in nevronskih mreˇz ter si bolj podobno pogledamo algoritem DDPG. Glede na pridobljeno znanje implementiramo agenta, ki parkira na praznem parkiriˇsˇcu. Primerjamo, kako se razliˇcne arhitekture nevronske mreˇze obnesejo na problemu in kako globina in ˇsirina mreˇze vplivata na rezultate. Primerjamo jih na podlagi odstotka uspeˇsnih parkiranj, povpreˇcnega ˇstevila korakov za uspeˇsno parkiranje in poti, ki jih avtomobil opravi med parkiranjem. Najbolj uspeˇsna arhitektura je problem parkiranja in nakljuˇcne toˇcke reˇsila 100-odstotno v povpreˇcno 20 korakih. To arhitekturo smo testiral ˇse na poligonih z ovirami, ki so predstavljali postopno teˇzje oblike ˇcelnega, vzvratnega in boˇcnega parkiranja. Rezultati so obetavni in ponujajo moˇznost za nadaljnje raziskovanje.

Language:Slovenian
Keywords:spodbujevano učenje, DDPG, nevronske mreže, globoko učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-139807 This link opens in a new window
COBISS.SI-ID:121854467 This link opens in a new window
Publication date in RUL:07.09.2022
Views:714
Downloads:1253
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Learning to park a car in a simulator using DDPG algorithm
Abstract:
The thesis explores the problem of parking inside a simulator with the help of a reinforcement learning algorithm DDPG. We get familiar with the theoretical background of reinforcement learning, neural networks, and an in-depth knowledge of DDPG. Based on our knowledge we implement an agent capable of parking in an empty parking lot. We compare different neural network architectures and how changing the depth and width affect the results. We compare the results based on the percentage of successful episodes, the average steps necessary for a successful episode, and the paths the car made during parking. The most successful architecture solved the problem of parking from a random starting point 100% and in on average 20 steps. We then tested this architecture on courses with obstacles that represented gradually harder degrees of difficulty for perpendicular, reverse and parallel parking. The results are promising and offer room for further research and development

Keywords:reinfocment learning, DDPG, neural network, deep learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back