izpis_h1_title_alt

Vizualna kontrola pakiranja izdelkov na palete na osnovi konvolucijskih nevronskih mrež
ID Rostohar, Matej (Author), ID Bračun, Drago (Mentor) More about this mentor... This link opens in a new window, ID Vrabič, Rok (Comentor)

.pdfPDF - Presentation file, Download (3,84 MB)
MD5: 0702583463D76B0A84AD398017CD4CA1

Abstract
V prehranski industriji se izdelki pogosto pakirajo na pladnje ali palate v 2D strukture na avtomatiziranih linijah, kjer se lahko poškodujejo. Problem detekcije slabih izdelkov je bil reševan z uporabo strojnega vida v kombinaciji z globokim učenjem. Zaradi velike variabilnosti napak in narave industrijske proizvodnje smo konvolucijsko nevronsko mrežo učili nenadzorovano. Ugotovljeno je bilo, da sistem za vizualno avtomatsko kontrolo produktov deluje dobro in uspešno loči dobre in slabe pakete. Sistem smo testirali na mirujočih objektih, in na paketih, ki so potovali po tekočem traku.

Language:Slovenian
Keywords:strojni vid, vizualna kontrola, avtomatizacija, paletizacija, konvolucijske nevronske mreže, nenadzorovano učenje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[M. Rostohar]
Year:2022
Number of pages:XXVI, 95 str.
PID:20.500.12556/RUL-139612 This link opens in a new window
UDC:681.5:004.9:004.85(043.2)
COBISS.SI-ID:120851715 This link opens in a new window
Publication date in RUL:06.09.2022
Views:650
Downloads:88
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Visual control of product packaging on pallets based on convolutional neural networks
Abstract:
In the food industry, products are often packed on trays or pallets in 2D structures on automated lines where damages can occur. The problem of detecting bad products was solved using computer vision combined with deep learning approach. Convolutional neural network was trained unsupervised due to the high variability of possible errors and the nature of industrial production. It was found that the system for automatic visual control of the products works well and successfully separates good and bad samples. We tested the system on stationary and moving objects traveling along the conveyor belt.

Keywords:computer vision, visual inspection, automation, palletization, convolutional neural networks, unsupervised learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back