izpis_h1_title_alt

Večnivojsko modeliranje v kemijskem inženirstvu
ID Kreuh, Izak (Author), ID Plazl, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,56 MB)
MD5: 7F6EE1B38619DBF6C327209034C58592

Abstract
Vse bolj pogosto se za razumevanje naše okolice uporabljajo matematični modeli. Za opis hidrodinamskih pojavov na makroskopski ravni uporabljamo Navier-Stokesove enačbe ter energijske bilance, ki temeljijo na ohranitvi mase in gibalne količine. Ko obravnavamo mikroskopsko raven, uporabljamo za opis gibanja delcev metodo molekulske dinamike ter za razne fizikalne pojave in termodinamska ravnotežja Monte Carlo metodo. Metoda, ki pa se vse bolj pogosto uporablja za opis raznih fizikalno-kemijskih pojavov na mezoskopskem nivoju, je mrežna Boltzmannova metoda. Prav to metodo smo uporabili v tej diplomski nalogi za modeliranje dveh hidrodinamskih pojavov: tok pod vplivom gravitacije in votlina z vsiljenim tokom. Na podlagi naših modelov smo ugotovili, da je za doseg rezultatov, ki so na voljo v literaturi, potrebno imeti dovolj časovnih korakov. To še posebej velja za votlino z vsiljenim tokom, ki potrebuje več časa, da doseže stacionarno stanje.

Language:Slovenian
Keywords:makroskopska raven, mikroskopska raven, mrežna Boltzmannova metoda, tok pod vplivom gravitacije, votlina z vsiljenim tokom
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2022
PID:20.500.12556/RUL-139582 This link opens in a new window
COBISS.SI-ID:126416899 This link opens in a new window
Publication date in RUL:05.09.2022
Views:946
Downloads:55
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Multiscale modeling in chemical engineering
Abstract:
Mathematical models are being used more and more for understanding our environment. The Navier-Stokes equations and thermodynamical energy balances are used for describing hydrodynamical phenomena on a macroscopic scale. They are based on the principle of mass and momentum conservation. For describing the microscopic scale, we use methods such as molecular dynamics, which is used for describing the motion of particles and the Monte Carlo method, which is used for describing different physical phenomena and thermodynamic equilibria. A method is being used more and more for describing different physical and chemical phenomena on a mesoscopic scale is the lattice Boltzmann method. This is the method we used in this thesis to model two hydrodynamic phenomena: gravity flow and lid-driven cavity flow. Based on our models, we discovered that in order to approximate the results available in different literature, it is necessary to have enough time steps in the simulation. This is especially true for the lid-driven cavity flow, which needs more time to reach an equilibrium state.

Keywords:macroscopic scale, microscopic scale, lattice Boltzmann method, gravity flow, lid-driven cavity flow

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back