Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Napovedovanje denarnih prilivov z algoritmom XGBoost : magistrsko delo
ID
Ognjanović, Špela
(
Author
),
ID
Grošelj, Jan
(
Mentor
)
More about this mentor...
,
ID
Dular, Tomaž
(
Comentor
)
PDF - Presentation file,
Download
(1,51 MB)
MD5: ACF7323B23BF58F0803846AC384CEFDC
Image galllery
Abstract
Uporaba umetne inteligence se je začela razvijati tudi v poslovnem okolju. Analiza podatkov podjetjem in drugim institucijam omogoča lažje in učinkovitejše poslovanje. V nalogi oblikujemo model za napovedovanje denarnih prilivov podjetja. Model zasnujemo na preteklih računih izbranega podjetja, na katerih testiramo različne algoritme strojnega učenja. Izkaže se, da najboljše rezultate vrne algoritem XGBoost. Algoritem sodi med drevesne algoritme strojnega učenja in se uporablja tako za primere razvrščanja kot za regresijske primere modeliranja. Obravnavani model ocenimo z različnimi metodami za ocenjevanje modelov strojnega učenja. To so metrika natančnost, metrika AUC, ROC krivulja, krivulja preciznost - priklic, kalibracijska krivulja in druge. Model dodatno preizkusimo na novejših podatkih ter primerjamo rezultate ocen te napovedi z ocenami napovedi izvedene na testni množici podatkov.
Language:
Slovenian
Keywords:
napoved
,
denarni prilivi
,
XGBoost
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2022
PID:
20.500.12556/RUL-139566
COBISS.SI-ID:
120157955
Publication date in RUL:
04.09.2022
Views:
780
Downloads:
148
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
OGNJANOVIĆ, Špela, 2022,
Napovedovanje denarnih prilivov z algoritmom XGBoost : magistrsko delo
[online]. Master’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=139566
Copy citation
Share:
Secondary language
Language:
English
Title:
Cash inflow forecasting with XGBoost algorithm
Abstract:
The use of artificial intelligence has also begun to develop in the business environment. Data analysis enables companies and other institutions to operate more easily and efficiently. In this work, we create a model for forecasting the company's cash inflows. We design the model on the past invoices of the selected company, on which we test various machine learning algorithms. It turns out that the XGBoost algorithm returns the best results. The algorithm belongs to the machine learning tree algorithms and is used for both classification and regression modeling examples. The considered model is evaluated with different methods for evaluating machine learning models. These are metric auccuracy, AUC metric, precision metric, ROC curve, precision-recall curve, calibration curve and others. We additionally test the model on more recent data and compare the results of the estimates of this forecast with the estimates of the forecast carried out on the test data set.
Keywords:
forecast
,
cash inflow
,
XGBoost
Similar documents
Similar works from RUL:
Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks
Ocena mehanskih lastnosti betona po izpostavljenosti povišanim temperaturam z uporabo različnih regresijskih modelov
Samozgoščevalni betoni z agregatom iz ekspandirane gline
Analiza korelacije med enoosno tlačno trdnostjo in prebijalnim trdnostnim indeksom kamnin
Modelling soil behaviour in uniaxial strain conditions by neural networks
Similar works from other Slovenian collections:
Reciklirani beton kot agregat za proizvodnjo konstrukcijskih betonov
Drobno mleta žlindra kot vezivo v cementnih kompozitih
Alternativna mineralna veziva
Algoritmi po vzorih iz narave za optimizacijo hiperparametrov
Korozijski mehanizmi cementiranih zemljin za tri različne raztopine sulfatov
Back