izpis_h1_title_alt

Napovedovanje denarnih prilivov z algoritmom XGBoost : magistrsko delo
ID Ognjanović, Špela (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window, ID Dular, Tomaž (Comentor)

.pdfPDF - Presentation file, Download (1,51 MB)
MD5: ACF7323B23BF58F0803846AC384CEFDC

Abstract
Uporaba umetne inteligence se je začela razvijati tudi v poslovnem okolju. Analiza podatkov podjetjem in drugim institucijam omogoča lažje in učinkovitejše poslovanje. V nalogi oblikujemo model za napovedovanje denarnih prilivov podjetja. Model zasnujemo na preteklih računih izbranega podjetja, na katerih testiramo različne algoritme strojnega učenja. Izkaže se, da najboljše rezultate vrne algoritem XGBoost. Algoritem sodi med drevesne algoritme strojnega učenja in se uporablja tako za primere razvrščanja kot za regresijske primere modeliranja. Obravnavani model ocenimo z različnimi metodami za ocenjevanje modelov strojnega učenja. To so metrika natančnost, metrika AUC, ROC krivulja, krivulja preciznost - priklic, kalibracijska krivulja in druge. Model dodatno preizkusimo na novejših podatkih ter primerjamo rezultate ocen te napovedi z ocenami napovedi izvedene na testni množici podatkov.

Language:Slovenian
Keywords:napoved, denarni prilivi, XGBoost
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-139566 This link opens in a new window
COBISS.SI-ID:120157955 This link opens in a new window
Publication date in RUL:04.09.2022
Views:646
Downloads:102
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cash inflow forecasting with XGBoost algorithm
Abstract:
The use of artificial intelligence has also begun to develop in the business environment. Data analysis enables companies and other institutions to operate more easily and efficiently. In this work, we create a model for forecasting the company's cash inflows. We design the model on the past invoices of the selected company, on which we test various machine learning algorithms. It turns out that the XGBoost algorithm returns the best results. The algorithm belongs to the machine learning tree algorithms and is used for both classification and regression modeling examples. The considered model is evaluated with different methods for evaluating machine learning models. These are metric auccuracy, AUC metric, precision metric, ROC curve, precision-recall curve, calibration curve and others. We additionally test the model on more recent data and compare the results of the estimates of this forecast with the estimates of the forecast carried out on the test data set.

Keywords:forecast, cash inflow, XGBoost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back