izpis_h1_title_alt

Eliptične krivulje in kompleksni torusi : delo diplomskega seminarja
ID Jenko, Izak (Author), ID Strle, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (886,24 KB)
MD5: 711D90B83865923D4DA89DF975DD8ED4

Abstract
Eliptična krivulja nad poljem kompleksnih števil $\mathbb{C}$ je nesingularna projektivna kubika, podana z Weierstrassovo enačbo. S pomočjo izreka o implicitni funkciji pokažemo, da ta dopušča kompleksno strukturo, kar pomeni, da postane Riemannova ploskev. Po drugi strani vsak torus, predstavljen kot kvocient $\mathbb{C}$ po mreži $\Lambda$ - diskretni podgrupi $\mathbb{C}$ izomorfni $\mathbb{Z}^2$, podeduje kompleksno strukturo preko kvocientne preslikave in tako pojasni imenovanje kompleksni torus. Izkaže se, da ti dve, bistveno različni konstrukciji, presenetljivo porodita enaka oz. izomorfna matematična objekta. To vez razložimo preko teorije dvojno periodičnih funkcij, imenovanih eliptične funkcije, in modularnih funkcij z mnogo simetrije, povezane z modularno grupo $\operatorname{SL}_2(\mathbb{Z})$. Obravnavamo njihove osnovne lastnosti in razvijemo teorijo Weierstrassove funkcije $\wp$, ki nam nazadnje omogoči eksplicitno podati omenjeni izomorfizem in dokazati uniformizacijski izrek, ki združuje oba objekta.

Language:Slovenian
Keywords:eliptične krivulje, eliptične funkcije, kompleksni torusi, Weierstrassova funkcija $\wp$, j-invarianta, modularne funkcije
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-139404 This link opens in a new window
UDC:511
COBISS.SI-ID:120708611 This link opens in a new window
Publication date in RUL:02.09.2022
Views:580
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Elliptic curves and complex tori
Abstract:
An elliptic curve over the field of complex numbers $\mathbb{C}$ is a nonsingular projective cubic, given by the Weierstrass equation. Using the implicit function theorem we show, that it admits a complex structure, which makes it a Riemann surface. On the other hand every torus, which we view as a quotient of $\mathbb{C}$ modulo a lattice $\Lambda$ - a discrete subgroup of $\mathbb{C}$ isomorphic to $\mathbb{Z}^2$, inherits a complex structure via its quotient map, which justifies us naming it complex torus. These two, vastly different constructions, remarkably turn out to yield the same i.e. isomorphic mathematical objects. This link is explained using the theory of doubly periodic functions, also called elliptic functions, and modular functions, which are meromorphic functions on the upper half plane enjoying many symmetries involving the modular group $\operatorname{SL}_2(\mathbb{Z})$. We discuss their basic properties and develop the necessary theory of the Weierstrass $\wp$-function, alowing us to explicitly construct the aforementioned isomorphism and prove the uniformization theorem, unifying both objects of study.

Keywords:elliptic curves, elliptic functions, complex torus, Weierstrass $\wp$-function, j-invariant, modular functions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back