izpis_h1_title_alt

Učinkovit generativni model za algebrajske izraze in odkrivanje enačb : magistrsko delo
ID Mežnar, Sebastian (Avtor), ID Todorovski, Ljupčo (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,83 MB)
MD5: 4852792E0244EED4B0D0E0C1CF73204E

Izvleček
Odkrivanje enačb se ukvarja z iskanjem algebrajskih izrazov, ki se prilegajo danim podatkom. V nalogah odkrivanja enačb damo pogosto velik poudarek na generiranje izrazov. Čeprav so se izrazi v preteklosti generirali predvsem z kontekstno neodvisnimi gramatikami, evolucijskimi algoritmi in ostalimi pristopi, pa nedavno v ospredje prihajajo globoki generativni modeli. Prvi poskusi generiranja diskretnih, strukturiranih podatkov z globokimi generativnimi modeli vključujejo variacijske samokodirnike (CVAE) za preproste, neomejene nize simbolov in variacijske samokodirnike gramatik (GVAE), ki z uporabo kontekstno neodvisnih gramatik izhod dekodirnika sintaktično omejijo. V magistrskem delu predstavimo variacijski samokodirnik hierarhij (HVAE), ki v nasprotju s prejšnjimi pristopi izhod dekodirnika omeji z binarnimi izraznimi drevesi. Drevesa zakodiramo in dekodiramo s prilagojenima različicama rekurentne nevronske mreže z vrati. Trdimo, da lahko pristop HVAE naučimo bolj učinkovito kot pristopa CVAE in GVAE. To trditev potrdimo z empiričnim vrednotenjem, kjer je HVAE pri rekonstrukciji bolj uspešen kot druga pristopa kljub manjši učni množici in nižji dimenziji latentnega vektorja. Slednje simbolni regresiji dovoljuje bolj učinkovito uporabo Bayesove optimizacije za odkrivanje kompleksnih enačb iz podatkov.

Jezik:Slovenski jezik
Ključne besede:odkrivanje enačb, simbolna regresija, nevronske mreže, generativni modeli, variacijski samokodirniki, strojno učenje, globoko učenje, Bayesova optimizacija
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
FRI - Fakulteta za računalništvo in informatiko
Leto izida:2022
PID:20.500.12556/RUL-139400 Povezava se odpre v novem oknu
UDK:004
COBISS.SI-ID:119987459 Povezava se odpre v novem oknu
Datum objave v RUL:02.09.2022
Število ogledov:762
Število prenosov:442
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Efficient generative model for algebraic expressions and equation discovery
Izvleček:
Equation discovery searches for algebraic expressions that model the given data. In equation discovery tasks, strong emphasis is usually put on the generation of expressions. Historically, expressions are generated by using context-free grammars, evolutionary algorithms and other approaches, but recently generators based on deep learning started to emerge. First attempts at generating discrete, structured data with deep generative models include variational autoencoders (VAE) for simple, unconstrained character sequences, and grammar VAEs, which employ context-free grammars to syntactically constrain the output of the decoder. In contrast, the hierarchical VAE (HVAE) proposed in this paper constrains the output of the decoder to binary expression trees. These trees are encoded and decoded with two simple extensions of gated recursive units. We conjecture that the HVAE can be trained more efficiently than sequential and grammar based VAEs. Indeed, the experimental evaluation results show that the HVAE can be trained with less data and in a lower-dimensional latent space, while still significantly outperforming other approaches. The latter allows for efficient symbolic regression via Bayesian optimization in the latent space and the discovery of complex equations from data.

Ključne besede:equation discovery, symbolic regression, neural networks, variational autoencoders, generative models, machine learning, deep learning, Bayesian optimization

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj