izpis_h1_title_alt

Hassejevo načelo : magistrsko delo
ID Trstenjak, Saša (Author), ID Jezernik, Urban (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,54 MB)
MD5: AFE9EDFB5E90FE9CF0E2C93F4F828C3D

Abstract
V delu s pomočjo Hassejevega načela obravnavamo obstoj racionalnih ničel homogenih kvadratnih polinomov z racionalnimi koeficienti. Preko inverzne limite definiramo $p$-adična števila ${\mathbb Q}_p$ in obravnavamo rešljivost enačb v množici ${\mathbb Q}_p$. Nato definiramo Legendrov simbol in Hilbertov simbol, obravnavamo kvadrate v p-adičnih številih ter dokažemo Hassejevo načelo za homogene kvadratne polinome največ treh spremenljivk. V nadaljevanju si podrobneje pogledamo splošne kvadratne forme in dokažemo Hassejevo načelo še za homogene kvadratne polinome štirih in več spremenljivk. Navedemo še nekaj primerov polinomskih enačb višjih stopenj, ki ne ustrezajo Hassejevemu načelu. Na koncu si na primeru kubičnih form treh spremenljivk pogledamo, kolikšen delež jih ustreza Hassejevemu načelu in kolikšen delež ga ovrže.

Language:Slovenian
Keywords:p-adična števila, kvadratna forma, Hassejevo načelo, Hilbertov simbol
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-139031 This link opens in a new window
UDC:511
COBISS.SI-ID:119343619 This link opens in a new window
Publication date in RUL:29.08.2022
Views:1307
Downloads:138
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Hasse principle
Abstract:
In this thesis we explore the Hasse principle and use it to consider the existence of rational zeros of homogeneous quadratic polynomials with rational coefficients. We define $p$-adic numbers ${\mathbb Q}_p$ as an inverse limit and consider solvability of equations in the set ${\mathbb Q}_p$. We then define the Legendre symbol and the Hilbert symbol, consider p- adic squares, and prove the Hasse principle for homogeneous quadratic polynomials of up to three variables. Then we take a closer look at general quadratic forms and prove the Hasse principle for homogeneous quadratic polynomials of four or more variables. Next, we give a few examples of higher-degree polynomial equations that do not satisfy the Hasse principle. Finally, in the case of cubic forms of three variables, we look at what proportion of them satisfy the Hasse principle and what proportion do not.

Keywords:p-adic numbers, quadratic form, Hasse principle, Hilbert symbol

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back