izpis_h1_title_alt

Algoritem RSK : delo diplomskega seminarja
ID Golob, Luka (Author), ID Konvalinka, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (457,01 KB)
MD5: 0941615EB2DC9C6A6FDD403AD0149515

Abstract
Diplomska naloga podaja natančen dokaz bijektivnosti in simetrije algoritma RSK. Po dokazih predstavimo njegove posledice, med katerimi sta najbolj znani Cauchyjeva identiteta in zveza s permutacijami: $n! = \sum_{\lambda \vdash n} (f^\lambda)^2$. Preostala polovica naloge obravnava teorijo simetričnih funkcij. Za nekatere razrede simetričnih funkcij dokažemo, da tvorijo bazo, predvsem pa je tema naravnana k definiciji skalarnega produkta in dokazu, po katerem Schurove funkcije tvorijo ortonormirano bazo za definirani skalarni produkt.

Language:Slovenian
Keywords:algoritem RSK, simetrične funkcije, Schurove funkcije
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-138862 This link opens in a new window
UDC:519.1
COBISS.SI-ID:119128323 This link opens in a new window
Publication date in RUL:24.08.2022
Views:691
Downloads:75
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:RSK algorithm
Abstract:
In this diploma thesis, we show that the RSK algorithm is bijective and has a symmetric property. Afterwards we present some of its corollaries, among which the most prominent ones are the Cauchy identity and the permutation formula: $n! = \sum_{\lambda \vdash n} (f^\lambda)^2$. The other half of the thesis develops the theory of symmetric functions. For some classes of functions we show that they form a basis. The main aim is to define a scalar product on symmetric functions and then to prove that Schur functions form an orthonormal basis.

Keywords:RSK algorithm, symmetric functions, Schur functions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back