izpis_h1_title_alt

Language models and task-driven learning for sarcasm detection
ID DIMITRIEVIKJ, ALEKSANDAR (Avtor), ID Robnik Šikonja, Marko (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (286,70 KB)
MD5: 283B44935A745CF059FE4ACB18FB2B1D

Izvleček
In natural language processing, sarcasm detection determines whether a given text is sarcastic or not. It can have many real-world applications such as machine translation. In this work, we present three language modelling approaches and adapt them to the task of sarcasm detection. Two approaches are pretrained language models, BERT uses the encoder part of the transformer architecture and GPT-3 uses the decoder part of the transformer. The third method uses a newly-proposed task-driven learning technique TLM. We evaluated the methods using well-known metrics such as classification accuracy, precision and recall. GPT-3 performed the best in almost every aspect, with BERT being a close second. Our findings showed that TLM is very dependent on the task data and is therefore not suitable for a general task such as sarcasm detection.

Jezik:Angleški jezik
Ključne besede:natural language processing, language models, sarcasm detection, transformer architecture
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2022
PID:20.500.12556/RUL-138840 Povezava se odpre v novem oknu
COBISS.SI-ID:125453827 Povezava se odpre v novem oknu
Datum objave v RUL:23.08.2022
Število ogledov:717
Število prenosov:136
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Jezikovni modeli in učenje s prilagajanjem nalogi za prepoznavanje sarkazma
Izvleček:
Zaznavanje sarkazma je postopek ugotavljanja, ali je besedilo sarkastično ali ne. Avtomatsko prepoznavanje sarkazma je pomemben vidik obdelave naravnega jezika in ima lahko veliko aplikacij, npr strojno prevajanje. V delu predstavljamo tri pristope jezikovnega modeliranja in jih prilagajamo nalogi odkrivanja sarkazma. Dva pristopa sta vnaprej naučena jezikovna modela, BERT uporablja kodirni del transformerske arhitekture, GPT-3 pa uporablja dekodirni del transformerja. Tretja metoda, TLM, uporablja novo predlagano tehniko učenja, ki temelji na ekstrakciji podatkov glede na dano nalogo. Metode smo ovrednotili z uporabo dobro znanih metrik, kot so klasifikacijska točnost, natančnost in priklic. Metoda GPT-3 se je izkazala za najboljšo v skoraj vseh vidikih, BERT pa je bil na drugem mestu. Naše ugotovitve so pokazale, da je TLM zelo odvisen od podatkov dane naloge in zato ni primeren za splošno nalogo, kot je odkrivanje sarkazma.

Ključne besede:obdelava naravnega jezika, jezikovni modeli, prepoznavanje sarkazma, arhitektura transformer

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj