Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Pool-boiling performance on thin metal foils with graphene-oxide-nanoflake deposit
ID
Bregar, Tadej
(
Author
),
ID
Vodopivec, Matevž
(
Author
),
ID
Pečnik, Tim
(
Author
),
ID
Zupančič, Matevž
(
Author
),
ID
Golobič, Iztok
(
Author
)
PDF - Presentation file,
Download
(9,41 MB)
MD5: B325B14D665329962141898BA5940A26
URL - Source URL, Visit
https://www.mdpi.com/2079-4991/12/16/2772
Image galllery
Abstract
The pool-boiling performance of water on thin metal foils with graphene-oxide deposition was studied. The boiling performance was evaluated both on fully coated surfaces, achieved by spin-coating, and surfaces with a laser-textured nucleation site, into which graphene oxide was added via drop-casting. During the experiments, a high-speed IR camera was used to obtain the transient temperature and heat-flux distribution. At the same time, a high-speed video camera was used to acquire synchronized bubble-growth recordings. In addition, a surface-wettability analysis was conducted for all the samples. In the case of fully coated samples, graphene-oxide deposition resulted in an increased number of active nucleation sites and an increase in the nucleation temperature, leading to a lowered nucleation frequency. Meanwhile, samples with a single laser-textured nucleation site enabled the analysis of isolated vapor bubbles, confirming that graphene-oxide deposition leads to a higher nucleation temperature, consequently resulting in a larger bubble-departure diameter and longer growth time. Two explanations for the results are proposed: the wettability of graphene-oxide deposition and the filling of surface microcavities with graphene-oxide nanoflakes.
Language:
English
Keywords:
graphene oxide
,
nanocoating
,
nucleate boiling
,
local heat flux
,
nucleation site density
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FS - Faculty of Mechanical Engineering
Publication status:
Published
Publication version:
Version of Record
Year:
2022
Number of pages:
16 str.
Numbering:
Vol. 12, iss. 16, art. 2772
PID:
20.500.12556/RUL-138760
UDC:
66.02
ISSN on article:
2079-4991
DOI:
10.3390/nano12162772
COBISS.SI-ID:
118246915
Publication date in RUL:
16.08.2022
Views:
2622
Downloads:
126
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Nanomaterials
Shortened title:
Nanomaterials
Publisher:
MDPI
ISSN:
2079-4991
COBISS.SI-ID:
523286297
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
grafenov oksid
,
nanopremazi
,
mehurčkasto vrenje
,
lokalna gostota toplotnega toka
,
gostota aktivnih nukleacijskih mest
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0223
Name:
Prenos toplote in snovi
Funder:
ARRS - Slovenian Research Agency
Project number:
J2-2486
Name:
Izboljšan prenos toplote pri vrenju z uporabo hierarhičnih funkcionaliziranih površin (eHEATs)
Funder:
ARRS - Slovenian Research Agency
Project number:
N2-0251
Name:
Izboljšanje procesa vrenja z uporabo teksturiranih površin (BEST)
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back