izpis_h1_title_alt

Bayesian updating of tall timber building model using modal data
ID Kurent, Blaž (Avtor), ID Friedman, Noemi (Avtor), ID Ao, Wai Kei (Avtor), ID Brank, Boštjan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,20 MB)
MD5: 746D0486DF969B7C56F00AB11FD3A270
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0141029622006745 Povezava se odpre v novem oknu

Izvleček
A framework for the probabilistic finite element model updating based on measured modal data is presented. The described framework is applied to a seven-storey building made of cross-laminated timber panels. The experimental estimates based on the forced vibration test are used in the process of model updating. First, a generalized Polynomial Chaos surrogate model is derived representing the map from the model parameters to the eigenfrequencies and the eigenvectors. To overcome the difficulties caused by mode switching, we propose a novel approach to mode tracking based on partitioning an extended and low-rank representation of the k mode shapes resulting from different setups of the finite element model into k clusters by the k-means clustering algorithm. Second, the surrogate model derived with the help of mode pairing is used to efficiently perform sensitivity analysis and uncertainty quantification of the first five frequencies and the correspon ding mode shapes. Finally, the surrogate-based Bayesian update of the model parameters is efficiently performed, providing engineers not only with a finite element model that gives a good fit to the experimental modal data, but also a stochastic model that represents the uncertainties originating from the initial model and the uncertainties of measuring modal properties.

Jezik:Angleški jezik
Ključne besede:Bayesian model updating, tall CLT building, Polynomial Chaos surrogate, Uncertainty quantification, mode pairing, modal data
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2022
Št. strani:15 str.
Številčenje:Vol. 266, art. 114570
PID:20.500.12556/RUL-138559 Povezava se odpre v novem oknu
UDK:624.011.1:624.07
ISSN pri članku:0141-0296
DOI:10.1016/j.engstruct.2022.114570 Povezava se odpre v novem oknu
COBISS.SI-ID:115033603 Povezava se odpre v novem oknu
Datum objave v RUL:27.07.2022
Število ogledov:805
Število prenosov:177
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Engineering structures
Skrajšan naslov:Eng. struct.
Založnik:Elsevier
ISSN:0141-0296
COBISS.SI-ID:7750666 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:Bayesovo posodabljanje modela, visoka lesena stavba, surogat na podlagi polinomičnega kaosa, kvantifikacija negotovosti, podobnost modalnih oblik, modalne karakteristike

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:773324
Naslov:Innovating forest-based bioeconomy
Akronim:ForestValue

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Republic of Slovenia, Ministry of Education, Science and Sport
Akronim:ForestValue

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Forestry Commission GB
Akronim:ForestValue

Financer:Drugi - Drug financer ali več financerjev
Program financ.:ERA-NET Cofund ForestValue
Akronim:DynaTTB

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-2490
Naslov:Podatkovno podprto modeliranje obnašanja gradbenih konstrukcij

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Hungary, Ministry of Innovation and Technology, NRDI Office, Artificial Intelligence National Laboratory Program

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Hungary, National Research, Development and Innovation Office
Številka projekta:SNN 134368

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj