V tovarnah je zelo pomembno, da proizvodnja nemoteno teče, saj lahko vsaka nenapovedana prekinitev proizvodnje povzroči nezaželene stroške. Ena izmed možnih rešitev za doseganje nemotenega delovanja strojev je napovedno vzdrževanje, ki omogoča, da se lahko napako na stroju napove vnaprej in se prepreči, da se stroj pokvari. Napovedno vzdrževanje se lahko izvaja na podagi meritev tipal ali pa na podlagi dnevnika dogodkov. Prednost slednjega je, da so navadno dnevniki dogodkov prosto dostopni in pridobitev teh podatkov ne predstavlja dodatnih stroškov nameščanja tipal.
V tem magistrskem delu smo za reševanje problema napovedovanja napake izvedli pregled literature in identificirali dva pristopa. Oba pristopa smo implementirali in predlagali številne izboljšave. Da bi bolje ocenili oba pristopa, smo generirali 6 umetnih podatkovnih množic, vsako s svojo stopnjo kompleksnosti in naključnosti. Opazili smo, da en pristop deluje dobro v primeru enostavnih podatkov, medtem ko v primeru naključnega šuma, pričakovano, noben pristop ne deluje dovolj dobro. Analizo smo izvedli tudi na realnih podatkih, pridobljenih s strani podjetja Siemens. Na realnih podatkih žal noben pristop ni dosegel dobrih rezultatov, saj so le-ti zelo podobni naključnemu šumu in kot takšni niso dovolj informativni za uspešno napovedovanje napake.
|