izpis_h1_title_alt

Stoneov reprezentacijski izrek in vektorske mreže s krepko enoto : delo diplomskega seminarja
ID Čadež, David (Author), ID Kandić, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (639,26 KB)
MD5: AFBB237773DAFD316EB970D6AF9A486B

Abstract
Cilj tega diplomskega dela je predstaviti reprezentacijo Banachovih mrež s krepko enoto s prostori funkcij C(K) na kompaktnih topoloških prostorih K. V ta namen je vpeljan pojem Boolove algebre in dokazan Stoneov reprezentacijski izrek, ki služi kot močno orodje pri reprezentaciji Banachovih mrež. Nato je definiran Rieszov prostor, ki je vektorski prostor in hkrati mreža. Dokazanih je nekaj osnovnih lastnosti Rieszovih prostorov. Vpeljani so pojmi ideala, pasu, glavne projekcijske lastnosti, komponent pozitivnega vektorja in polnosti. Brez dokaza je naveden Freudenthalov spektralni izrek. Na koncu je dokazan glavni izrek, ki pravi, da je vsaka Banachova mreža s krepko enoto Rieszovo izomorfna nekemu prostoru funkcij C(K).

Language:Slovenian
Keywords:Boolova algebra, delno urejen vektorski prostor, Rieszov prostor, Stoneov reprezentacijski izrek, ideal, Banachova mreža
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-138238 This link opens in a new window
UDC:512
COBISS.SI-ID:115567875 This link opens in a new window
Publication date in RUL:13.07.2022
Views:790
Downloads:87
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stone representation theorem and vector lattices with a strong unit
Abstract:
The aim of this thesis is to introduce the representation of Banach lattices with a strong unit by function spaces C(K) on compact topological spaces. To this end, the notion of Boolean algebra is introduced and Stone’s representation theorem is proven, which serves as a powerful tool in representation of Banach lattices. The Riesz space is defined, which is both a vector space and a lattice. After that, some basic properties of Riesz spaces are shown and the notions of the ideal, band, principal projection property, components of a positive vector and completeness are introduced. Freudenthal’s spectral theorem is stated without proof. In the end, the main theorem is proven, which states that every Banach lattice with a strong unit is Riesz isomorphic to some function space C(K).

Keywords:Boolean algebra, partially ordered vector space, Riesz space, Stone representation theorem, ideal, Banach lattice

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back