izpis_h1_title_alt

Kubična Hermiteova interpolacija z majhno oscilacijo odvodov : delo diplomskega seminarja
ID Robida, Nika (Author), ID Žagar, Emil (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (707,34 KB)
MD5: 94119F339DCA6D115841B63DD63B31E9

Abstract
V delu obravnavamo konstrukcijo interpolacijskih polinomov in polinomskih zlepkov. Definiramo strogo diagonalno dominatnost in indeks diagonalne dominatnosti matrike. Na podlagi izbranih točk in vrednosti zaporednih višjih odvodov zapišemo splošno Hermiteovo interpolacijsko formulo. Uporabo si ogledamo na primeru, ko so znane vrednosti prvih odvodov. Opišemo postopek iskanja kubičnih Hermiteovih interpolacijskih zlepkov, ki kar najmanj oscilirajo. Pri tem se poslužujemo optimizacije različnih funkcionalov z metodo najmanjših kvadratov. Analiziramo napako interpolacije. Opišemo interpolacijo parametričnih krivulj in vpliv izbire parametrizacije na obliko krivulje. Rezultati so prikazani na več numeričnih primerih.

Language:Slovenian
Keywords:Hermiteova interpolacijska formula, kubična Hermiteova interpolacija, optimizacija odvodov, zlepek, stroga diagonalna dominantnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-137977 This link opens in a new window
UDC:519.6
COBISS.SI-ID:114910979 This link opens in a new window
Publication date in RUL:07.07.2022
Views:764
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cubic Hermite interpolation with small derivative oscillation
Abstract:
The present diploma work deals with the construction of interpolation polynomials and polynomial splines. Strictly diagonal dominance and index of diagonally dominant matrix are defined. Based on given data points and values of consecutive higher order derivatives, formula for general Hermite interpolation is presented. We use that formula on the given data points with specified first derivatives at the interpolation points. The method for obtaining cubic Hermite interpolating spline with minimal derivative oscillation is described. In order to determine those polynomials, we consider functionals and the least squares method. We present the error analysis of the interpolant. Parametric curve design and the effect of the choice of interpolation parameters on visual appearance of the curve are described. The results are illustrated with several numerical examples.

Keywords:Hermite interpolation formula, cubic Hermite interpolation, derivative optimization, spline, strictly diagonal dominance

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back