izpis_h1_title_alt

Strukturno-podprto načrtovanje, sinteza in vrednotenje novih zaviralcev biosinteze peptidoglikana : doktorska disertacija
ID Rožman, Kaja (Author), ID Gobec, Stanislav (Mentor) More about this mentor... This link opens in a new window, ID Sova, Matej (Comentor)

.pdfPDF - Presentation file, Download (8,64 MB)
MD5: 92D0F458C0743B1FDB9E410E9938A8D7

Abstract
Zdravljenje bakterijskih okužb zaradi porasta števila odpornih bakterijskih sevov postaja vse večji klinični problem. Številni neuspeli poskusi razvoja protibakterijskih učinkovin so terjali svoj davek v farmacevtski industriji, kjer so z leti začeli postopoma ukinjati ali pa vsaj omejevati finančni vložek v ta namen, kar pa je le še poslabšalo stanje v zdravstvenih ustanovah. Velik delež razvoja protibakterijskih učinkovin se je tako prenesel v akademske in druge raziskovalne ustanove. Za eno najpomembnejših tarč pri razvoju protibakterijskih učinkovin velja bakterijska celična stena. Ta je nujna za preživetje bakterij, saj ščiti organizem pred okoljskimi dejavniki, ohranja značilno obliko celice, vzdržuje osmotski pritisk znotraj celice in opravlja vlogo polprepustne membrane. Celična stena bakterij je v večji meri zgrajena iz peptidoglikana, sestavljenega iz ponavljajočih se amino sladkornih enot, ki so med sabo prečno povezane s peptidnim mostom. Biosinteza peptidoglikana poteka tako znotraj kot zunaj celične membrane. V tem procesu so udeleženi številni encimi, ki so potencialne tarče za razvoj protibakterijskih učinkovin. Protibakterijske učinkovine, ki delujejo na biosintezo peptidoglikana, tako onemogočijo nastanek celične stene bakterije in njeno smrt. Njihova glavna prednost je selektivna toksičnost in specifičnost. Posebnost mikobakterijske celične stene je debela plast mikolil-arabinogalaktana v kompleksu s peptidoglikanom, ki je prepredena s prostimi lipidi in številnimi proteini. Kompleksnost take celične stene predstavlja največjo oviro in hkrati izziv v razvoju novih učinkovin za zdravljenje tuberkuloze. V doktorskem delu predstavljamo načrtovanje zaviralcev encimov Mur, UppS in PPB2a, ki sodelujejo pri biosintezi peptidoglikana bodisi v citoplazemskih ali končnih modifikacijskih stopnjah. Prav tako smo se posvetili razvoju zaviralcev encima InhA, vpletenega v sintezo mikolnih kislin, ki predstavljajo pomemben del celične stene mikobakterij. Osredotočili smo se na moderne metode načrtovanja učinkovin, kot sta strukturno podprto načrtovanje in rešetanje visoke zmogljivosti. Razvoj računalniških metod je v zadnjih letih doživel velik vzpon in je trenutno vodilni pristop odkrivanja novih spojin zadetkov na številnih terapevtskih tarčah. V okviru doktorskega dela smo uporabili različne starejše metode in validirali nekatere novejše računalinške programe, ki so jih Kaja Rožman: Strukturno-podprto načrtovanje, sinteza in vrednotenje novih zaviralcev biosinteze peptidoglikana razvili naši partnerji iz Kemijskega inštituta v Ljubljani. Pridobljene spojine zadetke smo v nadaljevanju biološko ovrednotili in uporabili kot izhodišče za nadaljnjo optimizacijo. Encimi Mur v citoplazmi bakterijske celice katalizirajo nastanek UDP-N-acetilmuramoil pentapeptida, prekurzorja peptidoglikanske verige. Z uporabo spletnega strežnika ProBiS-CHARMMing smo simulirali proces induciranega prileganja encima MurA iz Escherichia coli ob vezavi liganda TAV iz kristalne strukture encima MurA iz Enterobacter cloacae. Tako smo povzročili odprtje in povečanje aktivnega mesta encima, ki smo ga uspešno uporabili kot osnovo virtualnega rešetanja filtrirane knjižnice spojin `ZINC Drugs Now´. Pridobili smo tri spojine zadetke, in sicer derivate dikarboksilne kisline, kinazolinona ter pirolopiridina, ki so in vitro zavirali encim MurA iz E. coli v mikromolarnem območju (v istem zaporedju, IC50 = 1 μM, 82 μM in 109 μM). Sintetizirali smo večjo serijo derivatov kinazolinonskega tipa, pri čemer smo sistematično spreminjali posamezne fragmente kinazolinona in vpeljali različne substituente. Velika večina sprememb je povzročila znižanje jakosti delovanja zaviralcev. Z odstranitvijo metilenskega distančnika na mestu 2 med obema dušikoma kinazolinona ter sočasno vpeljavo 5-nitrofuranilne skupine na to mesto pa smo poleg zaviralnega delovanja na MurA pridobili še dobro protibakterijsko delovanje na seva E. coli in Staphylococcus aureus. Spojini 2-(5-nitro-furan-2-il)-3H-kinazolin-4-on (IC50 = 47 μM, MIC = 1-8 μg/mL) in njegov 3-izopropilni derivat (IC50 = 87 μM, MIC = 2-8 μg/mL) predstavljata dobro izhodišče za nadaljnjo optimizacijo zaviralcev MurA pri razvoju protibakterijskih učinkovin. Z rešetanjem knjižnice kinaznih zaviralcev podjetja GlaxoSmithKline na ligazah Mur smo prišli do 5 različnih strukturnih razredov zaviralcev. Vse zadetke smo najprej ponovno sintetizirali in tako potrdili njihovo strukturo. Z biokemijskimi testi smo potrdili zaviralno delovanje stilbenskega derivata MH-96 in mu določili mikromolarno območje delovanja na encimih MurC, MurD in MuF (IC50 = 39-104 μM) ter z metodo STD-NMR potrdili tudi vezavo na encim MurD. Domnevamo, da bi se ta spojina lahko vezala v ATP vezavno mesto in delovala kot ATP kompetitiven zaviralec, kar bomo v prihodnosti poskušali tudi dokazati. Spojina tako predstavlja obetavno izhodiščno točko za nadaljnjo optimizacijo in razvoj protibakterijskih učinkovin. Sintaza UppS sodeluje pri nastanku lipida II v citoplazmi bakterijske celice, tako da katalizira nastanek undekaprenil pirofosfata. Mehanizem delovanja in zaviranje samega encima je še precej neraziskano, kljub temu, da je za bakterijo esencialen encim. Na osnovi trenutno najbolj odmevnih bisfosfonatnih zaviralcev UppS, natančneje bisfosfonata BPH-629, smo zasnovali in silico farmakoforni model, ki nam je služil kot filter za presejanje več milijonske knjižnice spojin. Vzporedno s pripravo knjižnice pa smo upoštevajoč pomembnost dveh vezavnih mest, med katerim mesto 1 sovpada z vezavnim mestom substrata farnezil pirofosfata, protein oblikovali tako, da je postal primeren za sidranje spojin. Z biokemijskim vrednotenjem smo nato dokazali zaviralno delovanje trem derivatov benzojske kisline v mikromolarnem območju (IC50 = 24-45 μM). Spojine s kislinskim delom oponašajo pirofosfatni del substratov, zato predpostavljamo kompetitiven mehanizem zaviranja encima UppS. Kljub temu, da spojine nimajo protibakterijskega delovanja, pa predstavljajo dobro izhodišče za nadaljnjo optimizacijo spojin s ciljem izboljšanja prehajanja celične membrane bakterij. Transpeptidaza PBP2a je odgovorna za prečno premreženje peptidoglikanskih verig v zaključnih stopnjah sinteze celične stene bakterij. Specifično zaviranje PBP2a je v literaturi omenjeno kot ključno v razvoju ozkospektralnega antibiotika, saj je encim značilno izražen v na meticilin odpornem bakterijskem sevu (MRSA) kot mehanizem obrambe pred učinki penicilinov. Kot izhodišče iskanja novih zaviralcev smo vzeli kinazolinonski derivat, ki po kristalografskih podatkih za svoje zaviralno delovanje, podobno kot učinkovina ceftarolin, izkorišča vezavo v alosterično mesto PBP2a. Pripravili smo knjižnico spojin na osnovi podobnosti z omenjenim kinazolinonskim zaviralcem in spojine sidrali v alosterično mesto encima. Z biokemijskimi testi smo dokazali vezavo in zaviralno delovanje trem spojinam. Med temi je najboljši kinazolinski derivat Z729094432 zaviral encim pri koncentraciji 100 μM, hkrati pa deloval zaviralno na rast MRSA (MIC = 16 μg/mL), ne pa tudi na neodporni sev S. aureus (MIC > 128 μg/mL), kar priča o vzročni povezavi med zaviranjem encima in protibakterijskim delovanjem. Odkriti strukturno različni zaviralci PBP2a s protibakterijskim delovanjem po naši oceni predstavljajo izjemno obetajočo osnovo za nadaljnjo optimizacijo oziroma razvoj protibakterijskih učinkovin. Reduktaza enoil acil prenašalnega proteina InhA je pomembna tarča pri razvoju učinkovin za zdravljenje tuberkuloze. Nove zaviralce encima smo načrtovali po dveh poteh. V prvem primeru smo s programom LiSiCa na osnovi podobnosti z znanima nanomolarnima zaviralcema, tiadiazolom 8 in tetrahidropiranom 9, poiskali nove, strukturno različne spojine, v drugem primeru pa smo z vtičnikom ProBiS iskali ligande iz proteinske baze PDB, ki se vežejo v aktivna mesta encimov s podobno strukturo kot jo ima InhA. Najbolje ocenjenih 17 spojin na osnovi podobnosti in 8 ligandov iz baze PDB smo naročili ter biokemijsko ovrednotili. Najboljši spojini, ligandu 09T, smo določili mešani tip zaviranja z določeno Ki vrednostjo 4 ± 1 μM. Čeprav je spojina šibkejši zaviralec od izhodiščnih molekul, pa zaradi precej majhne molekulske mase lahko služi kot dober fragment za nadaljnjo optimizacijo.

Language:Slovenian
Keywords:bakterijske infekcije, zdravljenje, protibakterijske učinkovine, celična stena, peptidoglikan, biosinteza, encimi, encimi Mur, undekaprelin pirofosfat sintetaza, penicilin vezoči protein 2a, encimski inhibitorji, mikobakterije, mikolne kisline, načrtovanje, sinteza, vrednotenje, rešetanje, disertacije
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[K. Rožman]
Year:2018
Number of pages:362 str.
PID:20.500.12556/RUL-137377 This link opens in a new window
UDC:615.281.9(043.3)
COBISS.SI-ID:295287808 This link opens in a new window
Publication date in RUL:15.06.2022
Views:1701
Downloads:43
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Structure-based design, synthesis and evaluation of new inhibitors of peptidoglycan biosynthesis
Abstract:
Treatment of bacterial infections is becoming a substantial clinical problem due to the increasing number of resistant bacterial strains. Many failed experiments in the development of antibacterial agents over the years have forced the pharmaceutical industry to gradually began to phase out or at least limit the financial contribution for this purpose, which only worsened the situation in healthcare institutions. A large part of the development of antibacterial agents was therefore transferred to the academia and other research institutions. Bacterial cell wall is one of the most important targets in the development of antibacterial agents. It is essential for the survival of bacteria, because it maintains the osmotic pressure inside the cell, protects the organism from environmental factors, preserves the characteristic cell shape and acts as a semi-permeable membrane. The cell wall of the bacteria is largely constructed of peptidoglycan, consisting of repeated amino sugar units that are cross-linked to another peptidoglycan chain through a peptide bridge. The biosynthesis of peptidoglycan is performed both on the inside and outside of the cell membrane. Many enzymes are involved in this process and they represent potential targets for the development of antibacterial agents. Antibacterial agents that act on the peptidoglycan biosynthesis lead to cell lysis and death of bacteria. Their main advantage is a selective toxicity and specificity. The specificity of the mycobacterial cell wall is a thick layer of mycolyl-arabinogalactan-peptidoglycan complex, which is interspersed with free lipids and numerous proteins. The complexity of such cell wall thus represents the biggest obstacle and concurrently also a challenge in the development of new agents for the treatment of tuberculosis. In this doctoral thesis, we present the design of novel inhibitors of Mur enzymes, UppS and PPB2a, which participate in either the cytoplasmic or the final modification stages of the peptidoglycan biosynthesis. We also devoted our effords to develop inhibitors of the InhA enzyme, which involved in the synthesis of mycolic acids that represent a significant proportion of the cell wall of mycobacteria. We focused on the modern methods for drug design, such as structure-based design and screening of focused libraries. The development of computational methods has undergone a major upswing in the recent years and is currently the leading approach of new compounds design for many therapeutic targets. Within the doctoral thesis we used various well established computational methods and at the same time we also validated some recent programs developed by our partners from the National Institute of Chemistry in Ljubljana. The obtained compounds were subsequently biologically evaluated and used as a starting point for further optimization. The cytoplasmic Mur enzymes catalyze the formation of UDP-N-acetylmuramoyl-pentapeptide, the soluble precursor of the peptidoglycan chain. The inhibition of these enzymes thus prevents the formation of the cell wall of the bacterium and consequently causes its death. The ProBiS-CHARMMing web server was used to simulate the induced-fit effect of MurA from E. coli upon binding of the TAV ligand from the crystal structure of the MurA from E. cloacae. This led to the opening and enlarging of the active site of the enzyme, which was successfully used for docking of filtered `ZINC Drugs Now´ compound library. Three hit compounds were obtained, namely the dicarboxylic acid, quinazolinone and pyrrolopyridine, which in vitro inhibited MurA from E. coli in the micromolar concentrations (IC50 = 1 μM, 82 μM and 109 μM, respectively). A large series of quinazolinone type derivatives were synthesized by systematically modifying individual quinazolinone fragments and introducing different substituents. The vast majority of changes led to a decreased inhibitory potency. The removal of the methylene bridge at the site 2 between the two nitrogen of quinazolinone and the simultaneous introduction of the 5-nitrofuranyl group to this site, not only improved the inhibitory potency against MurA, but also gained antibacterial activity against E. coli and S. aureus. The 2-(5-nitro-furan-2-yl)-3H-quinazolin-4-one (IC50 = 47 μM, MIC = 1-8 μg/mL) and its 3-isopropyl derivative (IC50 = 87 μM, MIC = 2-8 μg mL) are considered a good starting point for further optimization of MurA inhibitors in the development of antibacterials. During the screening of GlaxoSmithKline focused library of kinase inhibitors on Mur ligases, 5 different structural classes of inhibitors were discovered and then re-synthesized. The inhibitory potency of styrene derivative MH-96 against MurC, MurD and MuF enzymes (IC50 = 39-104 μM) was confirmed using biochemical assays. In addition, the binding of this compound to MurD was confirmed using the STD-NMR. We postulate that this inhibitor could bind to the ATP binding site and act as an ATP competitive inhibitor; however additional experiments are needed to confirm this hypothesis. This compound thus represents a promising starting point for further optimization and development of antibacterial agents. UppS synthase is involved in the formation of lipid II in the cytoplasm of the bacteria via catalyzing the formation of UPP. Although the enzyme is a validated antibacterial drug discovery target, the mechanism of action and inhibition of the enzyme is still fairly unexplored. Based on the currently most promising bisphosphonate inhibitors of UppS, more specifically BPH-629, an in silico pharmacophore model was designed and used to filter a library of several million compounds. Simultaneously with the library preparation, the protein construction was carried out by taking into account the importance of the two binding sites, among which site 1 coincide with the binding sites of the farnesyl pyrophosphate substrate. The biochemical evaluation further demonstrated the inhibitory potency of three benzoic acid derivatives in the micromolar range (IC50 = 24-45 μM). Carboxylic groups of the compounds mimic the pyrophosphate parts of the substrates, therefore a competitive mechanism of UppS inhibition was assumed. Despite the fact that the compounds do not posses antibacterial activity, they provide a good starting point for further optimization. Transpeptidase PBP2a is responsible for peptidoglycan cross-linking in the final stages of bacterial cell wall synthesis. Specific inhibition of PBP2a is crucial in the development of narrow-spectrum antibiotics, since the enzyme is typically expressed in methicillin resistant bacterial strain (MRSA) as a mechanism of defense against the effects of penicillins. Similarity search was performed based on previously mentioned query quinazolinone, which according to crystallographic data utilizes the binding to the allosteric site of PBP2a as mechanism of inhibition, similarly to a known drug ceftarolin. Further on, the pre-filtered compound library was docked in the allosteric site of the enzyme. Biochemical assays demonstrated the binding and inhibitory potencies of three hit compounds. Among these, quinazoline derivative Z729094432 inhibited PBP2a at 100 μM, while showing antibacterial activity against MRSA (MIC = 16 μg/mL), but not against S. aureus (MIC > 128 μg/mL), indicating a possible link between enzymatic inhibition and antibacterial activity. The discovery of PBP2a inhibitors with distinctive chemical structures supported by antibacterial activities, in our opinion, present a promising basis for further development of antibacterials. The enoyl acyl carrier protein reductase InhA is an important target in the development of drugs for the treatment of tuberculosis. The new inhibitors were designed using two methods. First, a similarity search based on the known nanomolar inhibitors, thiadiazole 8 and tetrahydropyrane 9, was performed using program LiSiCa. In the second case, the search for known ligands from the PDB bank was implemented using the ProBiS plugin, which collects ligands from active sites of all enzymes whose structure resembles the structure of InhA. 17 top-scoring compounds based on similarity and 8 ligands from the PDB database were purchased and biochemically evaluated. For the most potent compound, the ligand 09T, a mixed type of inhibition with a given Ki value of 4 ± 1 μM was determined. Although the compound is a less potent inhibitor than query compounds, it can serve as a good fragment for further optimization due to its relatively small molecular weight.


Projects

Funder:ARRS - Slovenian Research Agency
Project number:P1-0208
Name:Farmacevtska kemija: načrtovanje, sinteza in vrednotenje učinkovin

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back