Nucleate boiling is one of the most efficient mechanisms of heat transfer and it is extensively researched in areas where high heat flux at low wall superheat is needed. In this thesis, we experimentally evaluated the boiling process of water on thin metal foils with and without a laser textured nucleation spot at three different heat fluxes. Graphene oxide deposition was used on both types of foils. High-speed IR camera was used to obtain temperature field data, heat flux and heat transfer coefficient distributions, active nucleation site locations and nucleation frequency. Surface wettability analysis was also carried out and a high-speed video camera was used to record bubble growth. Graphene oxide deposition caused an increase in the amount of active nucleation sites, however, it also increased nucleation temperature and it did not ensure a more homogeneous temperate distribution. Laser textured nucleation spot enabled analysis of an isolated bubble, which confirmed that higher wall superheat is needed for nucleation with graphene oxide deposition. The results open possibilities of future research on isolated vapor bubble nucleation and active nucleation site sizes, while it would also be beneficial to explore the effect of graphene oxide deposition on boiling of dielectric fluids.
|