izpis_h1_title_alt

Dinamika homeomorfizmov krožnice : delo diplomskega seminarja
ID Medved, Ana (Author), ID Drinovec-Drnovšek, Barbara (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (619,12 KB)
MD5: 2985D22E9969E48A0A61E6DC1E44CC07

Abstract
V diplomskem delu se ukvarjamo z dinamiko homeomorfizmov krožnice. Krožnico definiramo kot množico ekvivalenčnih razredov in obravnavamo homeomorfizme f, ki slikajo s krožnice na krožnico. Ogledamo si preprost primer homeomorfizma krožnice: togo rotacijo, in preko študija orbit klasificiramo njeno dinamiko. Uvedemo dvig homeomorfizma kot funkcijo, ki preslikave iz krožnice dvigne na realno os. S pomočjo dviga končno definiramo najpomembnejši pojem te diplomske naloge: krožno število. Sledi dokaz dobre definiranosti krožnega števila. Krožna števila nato ločimo na racionalna in iracionalna. Če ima neki homeomorfizem krožnice f racionalno krožno število, je njegova dinamika natanko določena; njegove orbite so ali periodične ali se v limitnem primeru približujejo periodični orbiti. Če pa je krožno število f iracionalno, obravnava ni tako preprosta. Obnašanje orbit homeomorfizma f v tem primeru temelji na stopnji gladkosti f.

Language:Slovenian
Keywords:homeomorfizem krožnice, orbita, dvig, krožno število
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-137170 This link opens in a new window
UDC:517
COBISS.SI-ID:111277827 This link opens in a new window
Publication date in RUL:04.06.2022
Views:1195
Downloads:98
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The dynamics of circle homeomorphisms
Abstract:
In this bachelor thesis we consider the dynamics of circle homeomorphisms. We define the circle as the set of equivalence classes and study homeomorphisms f that map from the circle to the circle. We look at a simple example of a circle homeomorphism: a rigid rotation, and through the study of orbits classify its dynamics. We define the lift of a homeomorphism as a function that lifts the circle maps to the real line. By using the lift we can define the most important concept in this bachelor thesis: the rotation number. We prove that the rotation number is well-defined. We differentiate the rotation number based on its rationality or irrationality. If a homeomorphism f of a given circle has a rational rotation number, then its dynamic is strictly defined; its orbits are either periodic or are converging there in the limit sense. If the rotation number of f is irrational, it is a more complex case. The behaviour of orbits of the homeomorphism f in this case depends on the degree of smoothness of f.

Keywords:homeomorphism of the circle, orbit, lift, rotation number

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back