izpis_h1_title_alt

Razvoj in optimizacija metod tekočinske kromatografije visoke ločljivosti z vgrajeno kakovostjo pri razvoju zdravil : doktorska disertacija
ID Tome, Tim (Avtor), ID Obreza, Aleš (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Časar, Zdenko (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (12,55 MB)
MD5: C41E019B064C274402C923798EE3477C

Izvleček
Razvoj novega zdravila v farmacevtski industriji je sestavljen iz različnih procesov, med katere uvrščamo tudi razvoj analiznih metod. Rezultati, ki jih dobimo z njihovo uporabo, nam omogočajo odločitev glede strategije za nadaljnji razvoj zdravila oziroma podajo informacijo, ali je zdravilo primerno za sprostitev na trg. Zato je bistveno, da so analizne metode natančne, točne in zanesljive. Ključna analizna metoda za analizo in sproščanje zdravil je tekočinska kromatografija visoke ločljivosti (HPLC), katere razvoj je zaradi kompleksne sestave vzorcev tekom razvoja lahko zelo zahteven. S tradicionalnim pristopom (>>one factor at a time<< ali OFAT) je proces razvoja in optimizacije metode HPLC dolgotrajen in nepregleden, hkrati pa z njim ni mogoče določiti morebitnih interakcij med parametri (faktorji), ki vplivajo na delovanje metode. Leta 2004 je Ameriška agencija za hrano in zdravila (FDA) prvič predstavila pristop razvoja z vgrajeno kakovostjo (QbD), katerega namen je izboljšati kakovost zdravil z njenim načrtovanjem neposredno v farmacevtski proces. Junija 2018 je ICH naznanila novo smernico ICH Q14, ki bo vključevala uporabo QbD za razvoj, optimizacijo in validacijo analiznih metod, imenovan pristop razvoja analiznih metod z vgrajeno kakovostjo (AQbD). V uvodnem poglavju smo v obliki preglednega znanstvenega članka predstavili teoretično ozadje uporabe AQbD in podrobno predstavili novejše primere, na katerih po korakih prikažemo metodologijo AQbD pristopa pri razvoju in optimizaciji metod HPLC. V prvem poglavju raziskovalnega dela smo se osredotočili na metodo HPLC iz Evropske farmakopeje (EP) za določitev sorodnih snovi v zdravilni učinkovini celekoksib. Ta metoda ne dosega v farmakopeji predpisanega kriterija testa ustreznosti kromatografskega sistema (TUKS): resolucija med celekoksibom in nečistoto B je bila neustrezna, resolucija med nečistoto A in celekoksibom pa mejna. Z uporabo načrtovanja eksperimentov (DoE) smo metodo optimizirali v območju farmakopejsko dovoljenih odstopanj. Z DoE smo ovrednotili štiri kritične parametre: delež metanola in acetonitrila v mobilni fazi, temperaturo kolone in pretok mobilne faze in določili optimalno območje delovanja metode (>>sweet spot<<), kjer sta obe resoluciji ustrezni. To območje je bilo zelo ozko, na račun izboljšanih resolucij pa smo morali podaljšati čas analize za faktor 1,5. V drugem poglavju smo opisali razvoj in optimizacijo nove metode HPLC za določitev sorodnih snovi celekoksiba, saj je bila optimizirana farmakopejska metoda predolga in nerobustna. Na forumu Ameriške farmakopeje (USP) smo zasledili metodo HPLC za celekoksib kapsule, s katero bi lahko določali šest procesnih nečistot celekoksiba, ne pa tudi EP nečistote A, saj je eluirala pod vrhom celekoksiba. Od tu naprej je bil cilj razviti eno metodo HPLC, ki bo sposobna določiti vseh sedem procesnih nečistot celekoksiba iz EP in USP. Zaradi strukturne podobnosti nekaterih procesnih nečistot (položajni izomeri) smo poiskali primernejšo stacionarno fazo za njihovo ločbo. Zadovoljivo ločbo smo dosegli z uporabo kiralne stacionarne faze v reverzno faznem načinu elucije. Z uporabo programa MODDE smo metodo optimizirali in določili območje robustnosti. S 17 eksperimenti po modelu >>central composite face design<< smo ovrednotili delež acetonitrila v mobilni fazi, temperaturo kolone in pretok mobilne faze, ter kot kritične odzive spremljali tri kritične resolucije in retencijski čas elucije zadnje nečistote. Z metodo večkratne linearne regresije (MLR) smo povezali vrednosti faktorjev z eksperimentalno določenimi vrednostmi odzivov v statistično pomemben matematični model z odličnimi napovednimi lastnostmi. Z uporabo metode Monte Carlo simulacij smo določili območje robustnosti metode (>>design space<<), v katerem z 99 % verjetnostjo vsi odzivi ustrezajo kriterijem. V območju robustnosti smo določili tudi kombinacijo vrednosti faktorjev, ki dajejo optimalne odzive ter potrdili ustrezno ponovljivost, točnost, linearnost in občutljivost razvite metode HPLC. V tretjem poglavju smo se osredotočili na metodo HPLC iz EP za določitev sorodnih snovi v zdravilni učinkovini ropinirolijev klorid. Obstoječa metoda ni ločila dveh parov nečistot, hkrati pa je bil čas analize predolg. Za razvoj nove metode smo uporabili analizno tehniko UHPLC. Zaradi velikega števila kritičnih parametrov metode (molarna koncentracija in pH pufra, delež metanola v mobilni fazi, temperatura kolone, delež organske faze na začetku gradienta in strmina gradienta) smo v prvi fazi zasnovali pregledni eksperimentalni načrt z 19 eksperimenti. Določili smo tri faktorje (delež metanola v mobilni fazi, temperatura kolone in strmina gradienta) z velikim vplivom na kritične odzive. Za preostale tri faktorje pa smo že v tej fazi določili optimalne vrednosti. V fazi optimizacije metode smo zasnovali polni interakcijski načrt in po modelu >>central composite face-centered design<< izvedli 17 eksperimentov. Z metodo MLR smo povezali vrednosti faktorjev z eksperimentalno določenimi vrednostmi odzivov v statistično pomemben matematični model z zelo dobrimi napovednimi lastnostmi. Z metodo Monte Carlo simulacij smo določili dve možni območji robustnosti metode (>>design space<<) v odvisnosti od vrstnega reda elucije nečistote C in neznanega razkrojnega produkta. Za POVZETEK 3 končno metodo smo izbrali optimalno kombinacijo faktorjev, ki leži v robustnejšem območju ter potrdili ustrezno ponovljivost, točnost, linearnost in občutljivost razvite metode UHPLC. Z uporabo AQbD smo razvili dve novi robustni metodi in s tem odpravili težave obstoječih farmakopejskih metod. Z uporabo DoE smo zmanjšali število izvedenih eksperimentov, ki bi bili potrebni pri uporabi OFAT načina, matematični model pa nam je omogočil pridobitev podrobnih informacij glede vplivov faktorjev in faktorskih interakcij na posamezen odziv, česar z OFAT načinom ni mogoče ugotoviti. Na ta način smo določili območje robustnosti. V primeru ropinirolijevega klorida smo bistveno skrajšali čas analize in zmanjšali porabo organskih topil, kar je v skladu z aktualnimi trendi v analizni kemiji. Na obeh primerih smo dokazali učinkovitost uporabe AQbD pri razvoju in optimizaciji metod HPLC.

Jezik:Slovenski jezik
Ključne besede:optimizacija metod HPLC, sproščanje učinkovin, celekoksib, farmacevtska industrija, tekočinska kromatografija, zdravila
Vrsta gradiva:Doktorska disertacija
Tipologija:2.08 - Doktorska disertacija
Organizacija:FFA - Fakulteta za farmacijo
Kraj izida:Ljubljana
Založnik:[T. Tome]
Leto izida:2020
Št. strani:112 str.
PID:20.500.12556/RUL-137118 Povezava se odpre v novem oknu
UDK:543.544.5:661.12:615(043.3)
COBISS.SI-ID:32340483 Povezava se odpre v novem oknu
Datum objave v RUL:01.06.2022
Število ogledov:773
Število prenosov:76
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Development and optimization of HPLC methods in drug development using Quality by design approach
Izvleček:
The development of a new drug product in pharmaceutical industry consists of many processes, including analytical methods. The results obtained by using analytical methods allow us to determine the strategy for further development or provide information on whether the drug product may be released. It is therefore essential that analytical methods are precise, accurate and reliable. High performance liquid chromatography (HPLC) method is the key analytical method for drug product analysis and release. The development of HPLC method may be a challenge because of the complexity of the samples in development. Using the traditional approach (OFAT) the process of HPLC method development and optimization is time consuming and non-transparent, as well as it is impossible to determine factor interactions that affect method performance. In 2004, the FDA first introduced Quality by Design (QbD), the purpose of which is to improve the quality of the drug product by designing it directly into the pharmaceutical process. In June 2018, ICH announced a new ICH Q14 guideline that will include the use of QbD for analytical methods, called Analytical Quality by Design (AQbD). In the introduction part, as a review scientific article, we introduced the theoretical background of AQbD and presented in detail the recent cases, which systematically show the methodology of the AQbD approach to the development and optimization of HPLC methods. In chapter one of experimental part, we focused on the HPLC method from the EP for the determination of related substances in celecoxib. Using the prescribed analytical method the system suitability test (SST) criteria cannot be met: inadequate resolution between celecoxib and impurity B, barely adequate resolution between impurity A and celecoxib. Using the Design of Experiments (DoE) we optimized the pharmacopeial method within the acceptable limits prescribed in the EP. Four critical method parameters were varied using DoE: the ratio of methanol and acetonitrile in the mobile phase, column temperature and mobile phase flow rate. We determined the sweet spot, in which both resolution meet the SST criteria. However, the sweet spot was narrow and the analysis time had to be increased for a factor of 1.5. In chapter two, we started with the development and optimization of a new HPLC method for celecoxib, since the pharmacopeial optimized method was too long and non-robust. In the USP forum, we found the HPLC method for celecoxib capsules, that can be used for the determination of six process related impurities but not also impurity A, as it was not separated from the peak of celecoxib. Our goal was to develop one HPLC method able to determine all seven process related impurities of celecoxib from EP and USP. Due to structural similarity of some investigated process-related impurities (positional isomers), we had to find a more suitable stationary phase for their separation. Using a chiral column in reversed phase, we achieved satisfactory separations. In order to optimize the method and determine the design space, we performed 17 experiments according to a central composite face design, in which the values of three CMPs (the ratio of acetonitrile in the mobile phase, column temperature and mobile phase flow rate) were varied. Three critical resolutions and the retention time of the last eluting impurity were monitored as CMAs. Using the multiple linear regression (MLR) method, we established a statistically significant mathematical model with excellent prediction abilities. Using the Monte Carlo simulations method, we determined the design space, in which all responses meet the criteria with 99 % probability. We also determined a combination of factors that give the optimal response and confirmed the suitable precision, accuracy, linearity and sensitivity of the developed HPLC method. In chapter three, we focused on the HPLC method from the EP for the determination of related substances in ropinirole hydrochloride. The pharmacopeial method did not separate two pairs of impurities and the analysis time was too long. A UHPLC analytical technique was used to develop a new method. Due to a relatively large number of CMPs (buffer molarity, buffer pH, ratio of methanol in the mobile phase, column temperature, initial ratio of organic phase and gradient slope) we performed 19 experiments according to a fractional factorial screening design. Using DoE, we determined the effects of factors, among which the ratio of methanol in the mobile phase, column temperature and gradient slope turned out as highly significant. In this step, we already determined the optimal values for the three less significant factors. In the method optimization step, we performed 17 experiments according to a central composite face-centered response-surface design. Using the MLR method, we established a statistically significant mathematical model with very good prediction abilities. Using the Monte Carlo simulations method, we determined two design spaces according to the elution order of impurity C and unknown degradation impurity. For the final method, we chose the optimal combination of factors from the wider design space and confirmed the suitable precision, accuracy, linearity and sensitivity of the developed UHPLC method. Using AQbD, we developed and optimized two new robust methods, which eliminate the issues of the existing pharmacopeial methods. Using DoE reduced the number of experiments that would otherwise be performed if using OFAT approach, and that the established mathematical model allowed us to obtain detailed information on the effects of factors and factor interactions on a particular response, which is impossible to determine using OFAT. Using DoE, we determined the design space. In the case of ropinirole hydrochloride, we significantly shortened the analysis time and reduced organic solvent consumption, which is in line with current trends of analytical chemistry. For both cases, we have proven the effectiveness of the AQbD approach to the development and optimization of HPLC methods.


Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj