izpis_h1_title_alt

Študij pretočnih in mehanskih lastnosti zmesi za tabletiranje z visokomolekularno hipromelozo : doktorska disertacija
ID Grdešič, Peter (Author), ID German Ilić, Ilija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,46 MB)
MD5: 275A09896F17AF64270FEB43C3E49359

Abstract
Ustrezne pretočne in mehanske lastnosti zmesi za tabletiranje so ključnega pomena pri proizvodnji kakovostnih trdnih farmacevtskih oblik, tj. tudi ogrodnih tablet s podaljšanim sproščanjem, ki najpogosteje temeljijo na visokomolekularni hipromelozi (HPMC). Pomen teh lastnosti se še posebej izrazi pri prehodu iz manjšega laboratorijskega v pilotno in naprej v industrijsko merilo ter pri višjih hitrostih tabletiranja. Dobro poznavanje vpliva omenjenih lastnosti, povečave tehnološke opreme in procesa ter vpliva kritičnih procesnih parametrov na obnašanje zmesi med tabletiranjem je zato ključnega pomena, posledično pa jim je potrebno nameniti zadosti pozornosti že med samim razvojem zdravila. Kljub dolgoletni in široki uporabi HPMC polimerov, še vedno ni na voljo dovolj študij, ki bi celovito obravnavale področje razumevanja njihovih pretočnih in mehanskih lastnosti, še posebej razlik med njihovimi različnimi proizvajalci. Za HPMC polimere je značilno, da zaradi svojih slabših pretočnih in/ali mehanskih lastnosti največkrat ne omogočajo izdelave tablet s tehnologijo direktnega tabletiranja, ki je zaželena za industrijo. Z namenom izboljšanja teh lastnosti je potrebno zmesi prahov, ki vsebujejo večji delež HPMC, predhodno aglomerirati s tehnologijo vlažnega granuliranja. Ravno aglomeracija pa je eden bolj kompleksnih in znanstveno manj utemeljenih tehnoloških procesov, predvsem pa je zahtevno zagotavljanje ponovljivosti procesnih pogojev pri prenosu v večje industrijsko merilo in razumevanje vpliva procesnih parametrov na lastnosti izdelanih granul, ki v svoji sestavi vsebujejo visok delež HPMC, in iz njih izdelanih končnih farmacevtskih oblik. Zato je bil namen doktorskega dela 1) preučevanje pretočnih in mehanskih lastnosti (stisljivosti) HPMC polimerov (substitucijskega tipa 2208 različnih molekulskih mas in proizvajalcev, tudi dveh povsem novih tipov za direktno tabletiranje) kot osnovnih materialov, 2) preučevanje vpliva kritičnih procesnih parametrov granuliranja na pretočne lastnosti in stisljivost izdelanih granul, ki vsebujejo visok delež HPMC, 3) preučevanje vpliva povečave tehnološke opreme in velikosti serije v fazi granuliranja in tabletiranja na lastnosti izdelka 4) preučevanje vpliva hitrosti tabletiranja na deformacijo oz. stisljivost HPMC polimerov. Vse raziskave v okviru doktorske disertacije so potekale v kontekstu optimizacije pretočnih in mehanskih lastnosti eksperimentalne, a realne industrijske zmesi za tabletiranje, ki temelji na visokomolekularni HPMC. Zaradi tega dejstva menimo, da imajo zaključki še večjo težo in industrijsko uporabnost. Pretočne lastnosti smo določali z merjenjem pretočnega časa, nasipnega kota, nihanja mase in trdnosti tablet, Carrovega indeksa, Hausnerjevega razmerja, konstante B Heckelove krivulje in uporabo strižne celice. Znotraj-granularno poroznost smo določali z metodo mikro-računalniške tomografije. Kompresibilnost smo določali z zunaj-matrično izvedbo Heckelove analize, Walkerjeve analize in Kuentz-Leuenbergerjeve analize, tabletabilnost oz. kompaktibilnost pa s krivuljo odvisnosti natezne trdnosti od tlaka oz. poroznosti. Elastičnost smo merili s pomočjo indeksa elastične relaksacije. Tabletiranje smo izvajali s pomočjo tabletirke na udarec in simulatorja stiskanja, vlažno granuliranje pa v hitro-vrtečih granulatorjih z volumni 4 L, 300 L in 600 L. Rezultate smo tudi statistično obdelali. Raziskava vpliva povečave proizvodnega merila in kritičnih procesnih parametrov granuliranja v hitro vrtečem mešalniku na lastnosti izdelanih granul naše formulacije je pokazala večji vpliv samega merila oz. njegove povečave v primerjavi z vplivom procesnih parametrov znotraj posameznega merila. Prenos tehnologije aglomeracije v večje merilo je še vedno zelo kompleksen in nelinearen proces, negativnih lastnosti formulacij, še posebej zasnovanih na visokomolekularnih HPMC polimerih, pa zaradi njihove velike robustnosti ni vedno mogoče kompenzirati s prilagoditvijo procesnih parametrov v večjem merilu. Od vseh procesnih parametrov je sicer imela največji vpliv količina dodane vode, čeprav je bil njen neposredni vpliv na pretočne lastnosti in stisljivost na nivoju populacije granul bolj ali manj nepomemben, pomembnejši pa je bil njen posredni vpliv preko lastnosti posameznih granul, kot je npr. velikost granul. Rezultati so tudi pokazali, da oba nova tipa HPMC za direktno tabletiranje predstavljata dodatno možnost v okviru reševanja tehnološke problematike slabih pretočnih lastnosti formulacij s HPMC polimeri, saj sta imela boljše pretočne lastnosti od ostalih vzorcev. Vendar pa sta imela še vedno slabe pretočne lastnosti glede na klasifikacijo v evropski farmakopeji, hkrati pa tudi slabšo stisljivost (predvsem tabletabilnost) od ostalih vzorcev. Boljše in z obema tipoma za direktno tabletiranje primerljive pretočne lastnosti je imel Benecel K4M proizvajalca Ashland. Preostali materiali so bili med seboj primerljivi in slabše pretočni, pri čemer je v negativnem smislu nekoliko izstopal Metolose K100M proizvajalca Shin-Etsu. Methocel K15M proizvajalca Dow Chemical Company je imel najboljšo stisljivost, sledili pa so Methocel K100 LV istega proizvajalca, Benecel K100M proizvajalca Ashland in Metolose K100M proizvajalca Shin-Etsu. Glede na vse rezultate sta imela najslabšo stisljivost oba tipa za direktno tabletiranje proizvajalca Dow Chemical Company ter še Benecel K4M proizvajalca Ashland. HPMC polimeri so se razlikovali tudi v občutljivosti na spremembe hitrosti tabletiranja. Razlog za razlike je v njihovih viskoelastičnih mehanskih lastnostih. Methocel K4M DC proizvajalca Dow Chemical Company je bil najmanj občutljiv na spremembe hitrosti tabletiranja in s tem najmanj viskoelastičen. Sledili pa so Methocel K100M DC in oba materiala proizvajalca Ashland (Benecel K4M in K100M), brez bistvenih razlik med njimi. Oba materiala proizvajalca Shin-Etsu (Metolose K4M in K100M) pa sta se izkazala kot najbolj občutljiva in s tem najbolj viskoelastična. Pri prenosu tehnologije tabletiranja iz tabletirke na udarec na industrijsko rotirko, katere delovanje smo posnemali z uporabo simulatorja stiskanja, smo ugotovili, da je bila stisljivost pri uporabi slednjega kljub ohranitvi enakega kontaktnega časa bistveno slabša. Zato izvedba prenosa na industrijsko rotirko po našem mnenju zahteva poleg ohranitve kontaktnega časa tudi ohranitev relativnih prispevkov časov konsolidacije, rezidualnega stiskanja in dekompresije. Podobno kot pri vplivu hitrosti tabletiranja, pa tudi ta sprememba v opremi za tabletiranje ni imela istega vpliva na vse preučevane materiale, trend pa je bil primerljiv vplivu spremembe hitrosti tabletiranja. Na koncu smo preučevali še vpliv cikla navlaževanja in ponovnega sušenja (razvlaževanja) HPMC polimerov na njihovo stisljivost. Ugotovili smo, da se po sušenju nasipni volumen in poroznost materialov povečata v primerjavi z začetnimi vrednostmi pred navlažitvijo, kljub primerljivi vsebnosti vlage z začetno, povečana poroznost pa se ohranja tudi med stiskanjem. Večina od preučevanih materialov je imela zato po sušenju tudi slabšo stisljivost od začetne, najbolj izrazito pa je bilo to pri Benecel K4M proizvajalca Ashland. Pri ostalih materialih je bil ta vpliv manj izrazit, izjemoma pa tudi obraten. Ugotovitve doktorske disertacije po našem mnenju predstavljajo eno najbolj celovitih obravnav na področju razumevanja pretočnih in mehanskih lastnosti HPMC polimerov kot osnovnih materialov (praškov), še posebej razlik med njihovimi različnimi proizvajalci, pa tudi pretočnih in mehanskih lastnosti izdelanih granul, ki v svoji sestavi vsebujejo te polimere.

Language:Slovenian
Keywords:tabletiranje z visokomolekularno hipromelozo, HPMC polimeri, vlažno granuliranje, stisljivost HPMC polimerov, trdnost tablet, disertacije
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[P. Grdešič]
Year:2020
Number of pages:XI, 188 f.
PID:20.500.12556/RUL-137097 This link opens in a new window
UDC:661.12:615.45(043.3)
COBISS.SI-ID:28653315 This link opens in a new window
Publication date in RUL:01.06.2022
Views:774
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Study of flow and mechanical properties of tableting mixture based on high molecular weight hypromellose
Abstract:
Good flow and mechanical properties of compression mixtures are of key importance in manufacturing of quality solid oral pharmaceutical forms, including sustained release matrix tablets that are most frequently based on high-molecular weight hypromellose (HPMC). Importance of these properties is even more pronounced when scaling up from smaller laboratory to pilot and further to larger production scale, and when using higher tableting speeds. Understanding of the impact of the above mentioned properties, scale-up and critical process parameters on compression mixture behavior is therefore essential, and requires necessary attention already during research and development phase of the medicine. However, despite the wide use of HPMC polymers there is still a profound lack of studies with holistic assessment of their flow and mechanical properties, especially their differences between different producers. It is well known that HPMC polymers, due to their poor flow and/or mechanical properties, are not always suitable for direct compression, i.e. the technology of choice for manufacturing of tablets from industry perspective. Thus, wet agglomeration of dry powder mixture containing higher amount of HPMC polymers is often required to improve these properties. However, wet agglomeration is one of the more complex processes, where it is especially challenging to study and elucidate the effect of difficulty to achieve the same process conditions during scale-up and effect of process parameters on properties of produced granules that contain high amount of HPMC in their composition. The aim of our work has therefore been 1) to investigate flow and mechanical properties (compaction) of different grades of HPMC (substitution type 2208 polymers, including three different suppliers and two second generation directly compressible grades), 2) to investigate the effects of wet granulation process parameters on flow and compaction of produced granules that contain high amount of HPMC in their composition, 3) to investigate the effect of scale-up of granulation and tableting process on the properties of produced granules and tablets, 4) and to investigate the effect of tableting speed on deformation and compaction of HPMC polymers. All studies were performed in the context of optimization of the flow and mechanical properties of experimental, but realistic industrial compression mixture based on high-molecular weight HPMC. For this reason, we feel the results of our work have even bigger value and industrial application. The flow properties were determined using flow time, angle of repose, mass and hardness variation of produced tablets, Carr index, Hausner ratio, constant B from initial part of Heckel profile, and shear cell. Intra-granular porosity was determined using micro-computer tomography. The compaction properties were quantified using the ‘out-of-die’ Heckel, modified Walker and Kuentz-Leuenberger model, as well as two tensile strength profiles (tabletability and compactibility), and elastic recovery. Compaction was performed by both an instrumented single-punch tablet press and a high-speed rotary press simulator, and high-shear wet granulation was performed at different scales: 4 L, 300 L and 600 L. We used statistical approach to analyze the results. High-shear granulation scale-up and critical process parameters study showed the scale itself had larger effects on the granule properties than the process parameters for the formulation studied, which demonstrated high robustness of our formulation on the individual scale level. Granulation scale-up has again been found to be a very complex and non-linear process, and negative properties of formulations, especially those based on high-molecular weight HPMC polymers, are not easily compensated with the process parameters during the scale-up. Nevertheless, out of all the process parameters studied water addition volume had the largest effect, despite its more or less non-significant direct effect on flow and compaction properties of granules on bulk level. More statistically significant was its indirect effect through the effect on properties of primary granules, e.g. granule size. Results also showed both new direct compression HPMC grades had better flow properties in comparison to other more established grades, and represent additional options in the toolbox for optimization of flow properties of HPMC polymers and their formulations. Still, their flowability was poor to very poor according to pharmacopoeian classification, and at the same time their compaction properties (especially tabletability) was worse in comparison to other samples. Benecel K4M from Ashland also had slightly better flow properties, comparable with both direct compression grades. All other samples had worse flowability without significant differences between them, with Metolose K100M from Shin-Etsu having the worst flow properties. Methocel K15M from Dow Chemical Company had the best compaction properties, followed by Methocel K100 LV from the same producer and Benecel K100M from Ashland and Metolose K100M from Shin-Etsu. Based on all results both direct compression grades from Dow Chemical Company and Benecel K4M from Ashland had the worst compaction properties. All the studied HPMC samples exhibited some sensitivity to changes in the compression speed, however, not all the samples were susceptible to the same extent. The reason for these differences lays in their viscoelastic mechanical properties. Methocel K4M from Dow Chemical Company was the least sensitive to changes in compression speed and consequently the least viscoelastic. Methocel K100M DC and both samples from Ashland (Benecel K4M and K100M) followed, without significant differences among them. On the other hand, both samples from Shin-Etsu (Metolose K4M and K100M) showed to be the most sensitive and consequently the most viscoelastic. When transferring the tableting technology from a single punch press to a rotary press by using a compact simulator, the compaction properties of all studied samples were poorer, despite keeping the contact time constant. Hence, we believe not only contact time, but matching the relative contribution of consolidation times, dwell time and decompression time also has a crucial impact on the success of the scale-up, among other factors. However, not all materials were susceptible to the change of the equipment to the same extent, and the results showed similar trend as in the case of the compression speed sensitivity results. At the end we studied also the effect of exposing HPMC polymers to moisture followed by drying to initial levels of moisture on their compaction properties. After drying the samples back to the initial water content level the bulk volume and porosity were found to be higher than initial values before exposure to moisture, and higher porosity also maintained to be elevated during compaction. Therefore, most of the studied samples’ compaction properties got worse after the moisturing and drying cycle, with this effect being most profound for Benecel K4M from Ashland. For the rest of the samples this effect was less profound, rarely also opposite. The results of this thesis in our opinion present one of the most holistic assessments of flow and mechanical properties of HPMC polymers as basic powder materials so far, especially the studied differences among the three different producers, and also of flow and mechanical properties of produced granules containing high amount of these polymers in their composition.


Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back