Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Learning to combine local and global image information for contactless palmprint recognition
ID
Stoimčev, Marjan
(
Avtor
),
ID
Ivanovska, Marija
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(18,20 MB)
MD5: FDA8F8ABBF6FA4958A255676AEFB81C7
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1424-8220/22/1/73
Galerija slik
Izvleček
In the past few years, there has been a leap from traditional palmprint recognition methodologies, which use handcrafted features, to deep-learning approaches that are able to automatically learn feature representations from the input data. However, the information that is extracted from such deep-learning models typically corresponds to the global image appearance, where only the most discriminative cues from the input image are considered. This characteristic is especially problematic when data is acquired in unconstrained settings, as in the case of contactless palmprint recognition systems, where visual artifacts caused by elastic deformations of the palmar surface are typically present in spatially local parts of the captured images. In this study we address the problem of elastic deformations by introducing a new approach to contactless palmprint recognition based on a novel CNN model, designed as a two-path architecture, where one path processes the input in a holistic manner, while the second path extracts local information from smaller image patches sampled from the input image. As elastic deformations can be assumed to most significantly affect the global appearance, while having a lesser impact on spatially local image areas, the local processing path addresses the issues related to elastic deformations thereby supplementing the information from the global processing path. The model is trained with a learning objective that combines the Additive Angular Margin (ArcFace) Loss and the well-known center loss. By using the proposed model design, the discriminative power of the learned image representation is significantly enhanced compared to standard holistic models, which, as we show in the experimental section, leads to state-of-the-art performance for contactless palmprint recognition. Our approach is tested on two publicly available contactless palmprint datasets—namely, IITD and CASIA—and is demonstrated to perform favorably against state-of-the-art methods from the literature. The source code for the proposed model is made publicly available.
Jezik:
Angleški jezik
Ključne besede:
palmprint recognition
,
contactless palmprint images
,
elastic deformations
,
convolutional neural networks
,
deep learning
,
ArcFace loss
,
center loss
,
discriminative feature learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2022
Št. strani:
26 str.
Številčenje:
Vol. 22, iss. 1, art. 73
PID:
20.500.12556/RUL-136908
UDK:
004.93
ISSN pri članku:
1424-8220
DOI:
10.3390/s22010073
COBISS.SI-ID:
90907395
Datum objave v RUL:
24.05.2022
Število ogledov:
730
Število prenosov:
156
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sensors
Skrajšan naslov:
Sensors
Založnik:
MDPI
ISSN:
1424-8220
COBISS.SI-ID:
10176278
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
01.01.2022
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
samodejno razpoznavanje dlani
,
brezstične slike dlani
,
elastične deformacije
,
konvolucijske nevronske mreže
,
globoko učenje
,
središčna izgubna funkcija
,
diskriminativno luščenje značilk
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0250
Naslov:
Metrologija in biometrični sistemi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj