izpis_h1_title_alt

Integration of omics data to generate and analyse COVID-19 specific genome-scale metabolic models
ID Režen, Tadeja (Avtor), ID Martins, Alexandre (Avtor), ID Mraz, Miha (Avtor), ID Zimic, Nikolaj (Avtor), ID Rozman, Damjana (Avtor), ID Moškon, Miha (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (943,80 KB)
MD5: 2DC31B48099A0C68DF2860CCB3C8CC90
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0010482522002207 Povezava se odpre v novem oknu

Izvleček
COVID-19 presents a complex disease that needs to be addressed using systems medicine approaches that include genome-scale metabolic models (GEMs). Previous studies have used a single model extraction method (MEM) and/or a single transcriptomic dataset to reconstruct context-specific models, which proved to be insufficient for the broader biological contexts. We have applied four MEMs in combination with five COVID-19 datasets. Models produced by GIMME were separated by infection, while tINIT preserved the biological variability in the data and enabled the best prediction of the enrichment of metabolic subsystems. Vitamin D3 metabolism was predicted to be down-regulated in one dataset by GIMME, and in all by tINIT. Models generated by tINIT and GIMME predicted downregulation of retinol metabolism in different datasets, while downregulated cholesterol metabolism was predicted only by tINIT-generated models. Predictions are in line with the observations in COVID-19 patients. Our data indicated that GIMME and tINIT models provided the most biologically relevant results and should have a larger emphasis in further analyses. Particularly tINIT models identified the metabolic pathways that are a part of the host response and are potential antiviral targets. The code and the results of the analyses are available to download from https://github.com/CompBioLj/COVID_GEMs_and_MEMs.

Jezik:Angleški jezik
Ključne besede:COVID-19, genome-scale metabolic models, model extraction methods, context-specific models, metabolic enrichment analysis
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:MF - Medicinska fakulteta
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2022
Št. strani:10 str.
Številčenje:Vol. 145, art. 105428
PID:20.500.12556/RUL-136722 Povezava se odpre v novem oknu
UDK:004:578.834
ISSN pri članku:0010-4825
DOI:10.1016/j.compbiomed.2022.105428 Povezava se odpre v novem oknu
COBISS.SI-ID:102526467 Povezava se odpre v novem oknu
Datum objave v RUL:18.05.2022
Število ogledov:718
Število prenosov:154
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers in biology and medicine
Skrajšan naslov:Comput. biol. med.
Založnik:Elsevier
ISSN:0010-4825
COBISS.SI-ID:189801 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:COVID-19, metabolni modeli na nivoju genoma, metode ekstrakcije modelov, kontekstno specifični modeli, metabolna analiza obogatenosti

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0359
Naslov:Vseprisotno računalništvo

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0390
Naslov:Funkcijska genomika in biotehnologija za zdravje

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J1-9176
Naslov:HolesteROR pri presnovnih boleznih jeter

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:IP-022
Naslov:Network of infrastructure Centres of University of Ljubljana
Akronim:MRIC-UL-CFGBC

Financer:EC - European Commission
Program financ.:Erasmus+

Financer:EC - European Commission
Program financ.:European Regional Development Fund
Akronim:ELIXIR-SI RI-SI-2

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Republic of Slovenia, Ministry of Education, Science and Sport
Akronim:ELIXIR-SI RI-SI-2

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj