Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
End-effector force and joint torque estimation of a 7-DoF robotic manipulator using deep learning
ID
Kružić, Stanko
(
Avtor
),
ID
Musić, Josip
(
Avtor
),
ID
Kamnik, Roman
(
Avtor
),
ID
Papić, Vladan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(10,85 MB)
MD5: 0C7E36732B2514C9C75717A2C5C9F21D
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2079-9292/10/23/2963
Galerija slik
Izvleček
When a mobile robotic manipulator interacts with other robots, people, or the environment in general, the end-effector forces need to be measured to assess if a task has been completed successfully. Traditionally used force or torque estimation methods are usually based on observers, which require knowledge of the robot dynamics. Contrary to this, our approach involves two methods based on deep neural networks: robot end-effector force estimation and joint torque estimation. These methods require no knowledge of robot dynamics and are computationally effective but require a force sensor under the robot base. Several different architectures were considered for the tasks, and the best ones were identified among those tested. First, the data for training the networks were obtained in simulation. The trained networks showed reasonably good performance, especially using the LSTM architecture (with a root mean squared error (RMSE) of 0.1533 N for end-effector force estimation and 0.5115 Nm for joint torque estimation). Afterward, data were collected on a real Franka Emika Panda robot and then used to train the same networks for joint torque estimation. The obtained results are slightly worse than in simulation (0.5115 Nm vs. 0.6189 Nm, according to the RMSE metric) but still reasonably good, showing the validity of the proposed approach.
Jezik:
Angleški jezik
Ključne besede:
robotic manipulator
,
force estimation
,
deep learning
,
neural networks
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
18 str.
Številčenje:
Vol. 10, iss. 23, art. 2963
PID:
20.500.12556/RUL-136699
UDK:
007.52
ISSN pri članku:
2079-9292
DOI:
10.3390/electronics10232963
COBISS.SI-ID:
87856643
Datum objave v RUL:
16.05.2022
Število ogledov:
768
Število prenosov:
112
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Electronics
Skrajšan naslov:
Electronics
Založnik:
MDPI
ISSN:
2079-9292
COBISS.SI-ID:
523068953
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
01.12.2021
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
robotski manipulator
,
ocena sile interakcije
,
globoko učenje
,
nevronske mreže
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj