izpis_h1_title_alt

Odčitavanje prikazovalnikov merilnih inštrumentov z računalniškim vidom in metodami strojnega učenja
ID Bertoncelj, Anže (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (18,25 MB)
MD5: EAC16048555E25FB56FE60F9EB33167C

Abstract
Problem odčitavanja vrednosti analognih instrumentov z uporabo metod računalniškega vida je star problem, ki je bil že rešen z mnogimi različnimi pristopi. Zaradi zahteve podjetja po ponovni implementaciji starega algoritma, sta se nam pojavili dve vprašanji: Kako bi lahko problem rešili z uporabo najsodobnejših pristopov in kako dobro se ti novi pristopi primerjajo z obstoječimi starimi pristopi. V tej diplomski nalogi so predlagane tri metode, kjer vsaka poizkuša problem rešiti na svojevrsten način. Prva metoda je le ponovna implementacija in temelji na podlagi starih metod. Drugi dve metodi pa uporabljata umetno inteligenco in temeljita na nevronskih omrežjih VGG-16 in Mask R-CNN. V nalogi poleg opisov metod, te tudi implementiramo in med seboj primerjamo.

Language:Slovenian
Keywords:analogni merilni instrumenti, strojni vid, nevronska omrežja
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-136327 This link opens in a new window
COBISS.SI-ID:107176195 This link opens in a new window
Publication date in RUL:25.04.2022
Views:1272
Downloads:154
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Reading displays of measuring instruments using computer vision and machine learning methods
Abstract:
The problem of reading values from analogue instruments using comptures vision methods is an old problem that has already been solved many times using various methods. A request to re-implement the algorithm led to us ask ourself two questions: how could the problem be solved using state-of-the-art approaches, and how well do these new approaches compare with the existing old ones. In this thesis, three methods are presented, each trying to solve the problem of in a different way. The first method is just a re-implementation and upgrade of existing methods. However, the other two methods use artificial intelligence and are based on two different neural networks VGG-16 and Mask R-CNN. In addition to describing the methods, we also implement them and compare their results.

Keywords:analogue measuring instruments, machine vision, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back