izpis_h1_title_alt

Flows on metric graphs with general boundary conditions
ID Engel, Klaus-Jochen (Author), ID Kramar Fijavž, Marjeta (Author)

.pdfPDF - Presentation file, Download (605,89 KB)
MD5: 08E47D661F92B50BB80100C818AF1109
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0022247X22002281 This link opens in a new window

Abstract
In this note we study the generation of C$_0$-semigroups by first-order differential operators on L$^p(\mathbb{R}_+, \mathbb{C}^l$) × L$^p$([0, 1], $\mathbb{C}^m$) with general boundary conditions. In many cases we are able to characterize the generation property in terms of the invertibility of a matrix associated to the boundary conditions. The abstract results are used to study the well-posedness of transport equations on non-compact metric graphs.

Language:English
Keywords:first order differential operators, transport equation, C$_0$-semigroups, flows on networks, non-compact metric graphs
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FGG - Faculty of Civil and Geodetic Engineering
Publication status:Published
Publication version:Version of Record
Year:2022
Number of pages:27 str.
Numbering:Vol. 513, iss. 2, art. 126214
PID:20.500.12556/RUL-136221 This link opens in a new window
UDC:517.98
ISSN on article:0022-247X
DOI:10.1016/j.jmaa.2022.126214 This link opens in a new window
COBISS.SI-ID:105351427 This link opens in a new window
Publication date in RUL:20.04.2022
Views:714
Downloads:145
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of mathematical analysis and applications
Shortened title:J. math. anal. appl.
Publisher:Elsevier
ISSN:0022-247X
COBISS.SI-ID:3081231 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Keywords:diferencialni operatorji prvega reda, transportna enačba, C$_0$-polgrupe, pretoki v omrežjih, nekompaktni metrični grafi

Projects

Funder:Other - Other funder or multiple funders
Funding programme:COST
Project number:CA18232

Funder:ARRS - Slovenian Research Agency
Project number:P1-0222
Name:Algebra v teoriji operatorjev in finančna matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back