izpis_h1_title_alt

Primerjava algoritmov spodbujevalnega učenja na simulaciji parkiranja avtomobila
ID KRIŽMAN, KRISTJAN (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,72 MB)
MD5: BE8C06793EFA775B092D0A6F70ED6BDB

Abstract
Primerjajte algoritma spodbujevanega učenja DQN in DDPG v danem simulacijskem okolju za parkiranje avtomobila. Znotraj omejitev simulatorja lahko spreminjate opise stanj in akcij tako, da bodo primerni za dana algoritma. Uporabite lahko obstoječe implementacije algoritmov ali razvijete svoje. Poročajte o uspešnosti obeh algoritmov, časovni zahtevnosti in njuni občutljivosti na začetne parametre.

Language:Slovenian
Keywords:računalnik, strojno učenje, simulacija, igra, avtomobil, učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-135581 This link opens in a new window
COBISS.SI-ID:102689027 This link opens in a new window
Publication date in RUL:21.03.2022
Views:1060
Downloads:87
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of two reinforcement learning algorithms in a car parking simulator
Abstract:
Compare the DQN and DDPG reinforcement learning algorithms in a given car parking simulation environment. You may change the descriptions of states and actions within the limits of the simulator, to suit the given algorithm. Use existing implementations or develop your own. Report on the performance of both algorithms, their time complexity and their sensitivity to initial parameters.

Keywords:computer, machine learning, simulation, game, car, učenje

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back