izpis_h1_title_alt

Manjkajoči obseg : delo diplomskega seminarja
ID Sajovic, Luka (Avtor), ID Dolžan, David (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (472,64 KB)
MD5: 2ADF1BDB0B2E27A83B37D66617D67D09

Izvleček
Za kolobar $R$ definiramo komutirajoči graf $\Gamma(R)$ kot graf, v katerem so vozlišča necentralni elementi kolobarja $R$, dve vozlišči pa sta povezani natanko tedaj, ko pripadajoča elementa komutirata v $R$. Pokažemo, da je za kolobarje matrik nad poljem in $n \ge 3$, komutirajoči graf $\Gamma (M_n(F))$ povezan natanko tedaj, ko ima vsaka $F$-razširitev stopnje $n$ pravo vmesno polje. Nadalje pokažemo, da je $\Gamma (M_n(\mathbb{Q}))$ nepovezan $n \ge 2$. Dokažemo, da če je $\Gamma (M_n(F)))$ povezan, potem je njegov premer vsaj 4 in največ 6. Poiščemo nekaj primerov komutirajočih grafov s premerom 4. Dokažemo še, da če je $F$ končno polje in $n$ ni praštevilo ali kvadrat praštevila, je ${\rm diam}\,\Gamma (M_n(F)) \le 5$.

Jezik:Slovenski jezik
Ključne besede:komutirajoči graf, linearna algebra, matrika, Galoisova teorija
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2022
PID:20.500.12556/RUL-135507 Povezava se odpre v novem oknu
UDK:512
COBISS.SI-ID:101306115 Povezava se odpre v novem oknu
Datum objave v RUL:17.03.2022
Število ogledov:1363
Število prenosov:57
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:The missing field
Izvleček:
We define the commuting graph of ring $R$ as the graph $\Gamma(R)$ in which vertices are non-central elements of ring $R$. Two vertices are adjacent if and only if the corresponding elements commute in $R$. We show that for the ring of matrices over a field where $n \ge 3$ the commuting graph $\Gamma (M_n(F))$ is connected if and only if for every $F$-extension of degree $n$ exists a proper intermediate field. We also show that $\Gamma (M_n(\mathbb{Q}))$ is not connected for $n \ge 2$. We prove that if $\Gamma (M_n(F))$ is connected then $4 \le {\rm diam}\,\Gamma (M_n(F)) \le 6$. We find some examples of commuting graphs with diameter 4. We also prove that ${\rm diam}\,\Gamma (M_n(F)) \le 5$ if $F$ is a finite field and $n$ is not a prime nor square of a prime.

Ključne besede:commuting graph, linear algebra, matrix, Galois theory

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj