izpis_h1_title_alt

Določanje osvetlitve scene v obogateni resničnosti
ID MODIC, LEON (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,27 MB)
MD5: B6E258FAFAE5D5F3C0CB304F17564BC8

Abstract
Eden izmed glavnih načinov uporabe obogatene resničnosti je dodajanje objektov in označb v 3D prostor zajet s kamero mobilne naprave. Novi objekti v sceni morajo biti osvetljeni na način, ki odraža resnično osvetlitev, saj se na ta način zdijo bolj resnični in se zlijejo z okolico. V tem diplomskem delu smo razvili metodo za hitro in robustno določanje osvetlitve scene z uporabo konvolucijskih nevronskih mrež, ki bo lahko uporabljena v kontekstu obogatene resničnosti. Izdelali smo tudi zbirko sintetičnih podatkov, ki je bila uporabljena za učenje razvite mreže. Naučili smo več modelov z različnimi arhitekturami hrbtenice in primerjali njihovo natančnost ter hitrost na zbirki zajetih fotografij iz resničnega sveta. Rezultati eksperimentov kažejo uspešnost pri določanju smeri glavnega svetlobnega vira s pomočjo konvolucijskih nevronskih mrež tudi na podatkih, ki jih mreža med učenjem ni videla. Na koncu smo rezultate tudi vizualizirali na nekaterih izmed zajetih fotografij.

Language:Slovenian
Keywords:računalniški vid, obogatena resničnost, osvetlitev, konvolucijske nevronske mreže
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-135481 This link opens in a new window
COBISS.SI-ID:101461251 This link opens in a new window
Publication date in RUL:16.03.2022
Views:1372
Downloads:121
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determining scene illumination in augmented reality
Abstract:
One of the main use cases of augmented reality is to add objects and markings to a 3D space captured by a mobile device camera. New objects in a scene need proper lighting that reflects real lighting, as this way they appear more realistic and blend in better with the surroundings. In this dissertation, we developed a method for fast and robust detection of scene lighting using convolutional neural networks, which could be used in the context of augmented reality. We also created a dataset consisting of synthetic images used for training the convolutional neural network. We trained multiple models with different backbone architectures, and we compared their accuracy and speed on a dataset consisting of captured photos from the real world. The results of experiments demonstrate that convolutional neural networks can successfully determine the direction of the main light source on data not seen by the network during training. In the end, we visualized the results on some of the captured real world photos.

Keywords:computer vision, augmented reality, lighting, convolutional neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back