izpis_h1_title_alt

Triangulacije ploskev : magistrsko delo
ID Pevec, Tjaša (Author), ID Pavešić, Petar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,12 MB)
MD5: D900D38BA6B289E79787C586588CA908

Abstract
Definicija simplicialnih kompleksov in mnogoterosti nam omogoči razumevanje dveh osnovnih lastnosti ploskev, ki sta Eulerjeva karakteristika in orientabilnost. S pomočjo Dehn-Sommervillovih enačb zapisanih s f- in h-vektorjem definiramo Eulerjevo karakteristiko. Vidimo, da ta, poleg orientabilnosti, natanko določa vse sklenjene ploskve. Do homeomorfizma natančno dobimo eno izmed ploskev: sfero, povezano vsoto n torusov ali povezano vsoto n projektivnih ravnin. Ploskve predstavimo na dva različna načina, s pomočjo mnogokotnika skupaj z njegovo notranjostjo in s pomočjo Heffterjeve prezentacije. Glavna ugotovitev magistrske naloge je minimalna triangulacija ploskev. Oceno za to nam pove Heawoodova domneva, ki je prikazana na primerih sfere, torusa, dvojnega torusa, projektivne ravnine in Kleinove steklenice.

Language:Slovenian
Keywords:simplicialni kompleks, Eulerjeva karakteristika, orientabilnost ploskev, minimalne triangulacije
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2022
PID:20.500.12556/RUL-135424 This link opens in a new window
UDC:515.1
COBISS.SI-ID:100846083 This link opens in a new window
Publication date in RUL:13.03.2022
Views:1318
Downloads:139
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Triangulations of surfaces
Abstract:
The definition of simplicial complex and manifolds allows us to understand two general properties of surfaces, which are Euler characteristic and orientability. Using the Dehn-Sommerville equations written with f- and h-vectors we define the Euler characteristic. We see that this, in addition to orientability, leads us to classification theorem of surfaces. Up to a homeomorphism we get one of the surfaces: a sphere, a connected sum of n tori or a connected sum of n projective planes. We present the surfaces in two different ways: with polygon and with Heffter presentation. The main finding in this thesis is the minimal triangulation of surfaces. We show Heawood conjecture on examples of the sphere, torus, double torus, projective plane and Klein bottle.

Keywords:simplicial complex, Euler characteristic, orientability of surfaces, minimal triangulations

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back