Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Vzporedni genetski algoritem v OpenCL za simulacijo molekulske dinamike
ID
ERENT, TINE
(
Author
),
ID
Ilc, Nejc
(
Mentor
)
More about this mentor...
,
ID
Sluga, Davor
(
Comentor
)
PDF - Presentation file,
Download
(13,80 MB)
MD5: B229DFCD1FF0418E03B62CA29344FFC5
Image galllery
Abstract
V diplomskem delu smo razvili vzporedni genetski algoritem, ki se izvaja na heterogenih računalniških arhitekturah za potrebe simulacije molekulske dinamike. Razviti algoritem uporablja empirično cenilno funkcijo za ocenjevanje rešitev. Simulirali smo sidranje molekul v receptorsko mesto proteina in iskali optimalen položaj molekule. Uporabili smo razvojno ogrodje OpenCL. Analizirali smo konvergenco in učinkovitost algoritma. Uporabljeno merilo učinkovitosti je bil izvajalni čas simulacije. Za testne primere smo uporabili dva liganda. Algoritem smo preizkusili in ovrednotili na dveh grafičnih pospeševalnikih in večjedrnem procesorju. Vzporedni algoritem konvergira in vrača pričakovane rezultate. Za učinkovitejšo rabo grafične procesne enote in večje pohitritve je potrebno algoritem dodatno optimizirati.
Language:
Slovenian
Keywords:
genetski algoritem
,
OpenCL
,
molekulska dinamika
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2022
PID:
20.500.12556/RUL-135228
COBISS.SI-ID:
99473667
Publication date in RUL:
01.03.2022
Views:
1294
Downloads:
110
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Parallel genetic algorithm in OpenCL for simulating molecular dynamics
Abstract:
In this thesis we developed a parallel genetic algorithm which can run on heterogeneous systems to simulate molecular dynamics. The algorithm uses an empirical scoring function. We simulated molecule docking to a receptor protein and searched for optimal molecule position. We used OpenCL framework. We analysed the convergence and efficiency of the algorithm. We were primarily concerned with the simulation execution time. We used two ligands as test cases. The algorithm was evaluated on two graphics accelerators and a multi-core processor. Parallel algorithm converges and returns the expected results. For more efficient use of a graphics processing unit and achieving better speedup the algorithm needs further optimization.
Keywords:
genetic algorithm
,
OpenCL
,
molecular dynamics
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back