Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
A one-dimensional non-intrusive and privacy-preserving identification system for households
ID
Kompara, Tomaž
(
Avtor
),
ID
Perš, Janez
(
Avtor
),
ID
Susič, David
(
Avtor
),
ID
Gams, Matjaž
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,72 MB)
MD5: 42B6116CACF81CFEA402B55B00CFAC10
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2079-9292/10/5/559
Galerija slik
Izvleček
In many ambient-intelligence applications, including intelligent homes and cities, awareness of an inhabitant’s presence and identity is of great importance. Such an identification system should be non-intrusive and therefore seamless for the user, especially if our goal is ubiquitous and pervasive surveillance. However, due to privacy concerns and regulatory restrictions, such a system should also strive to preserve the user’s privacy as much as possible. In this paper, a novel identification system is presented based on a network of laser sensors, each attached on top of the room entry. Its sensor modality, a one-dimensional depth sensor, was chosen with privacy in mind. Each sensor is mounted on the top of a doorway, facing towards the entrance, at an angle. This position allows acquiring the user’s body shape while the user is crossing the doorway, and the classification is performed by classical machine learning methods. The system is non-intrusive, non-intrusive and preserves privacy—it omits specific user-sensitive information such as activity, facial expression or clothing. No video or audio data are required. The feasibility of such a system was tested on a nearly 4000-person, publicly available database of anthropometric measurements to analyze the relationships among accuracy, measured data and number of residents, while the evaluation of the system was conducted in a real-world scenario on 18 subjects. The evaluation was performed on a closed dataset with a 10-fold cross validation and showed 98.4% accuracy for all subjects. The accuracy for groups of five subjects averaged 99.1%. These results indicate that a network of one-dimensional depth sensors is suitable for the identification task with purposes such as surveillance and intelligent ambience.
Jezik:
Angleški jezik
Ključne besede:
one-dimensional depth sensor
,
biometrics
,
identification
,
machine learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
21 str.
Številčenje:
Vol. 10, iss. 5, art. 559
PID:
20.500.12556/RUL-135023
UDK:
004.8
ISSN pri članku:
2079-9292
DOI:
10.3390/electronics10050559
COBISS.SI-ID:
54936323
Datum objave v RUL:
17.02.2022
Število ogledov:
747
Število prenosov:
109
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Electronics
Skrajšan naslov:
Electronics
Založnik:
MDPI
ISSN:
2079-9292
COBISS.SI-ID:
523068953
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
01.03.2021
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0209
Naslov:
Umetna inteligenca in inteligentni sistemi
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0095
Naslov:
Vzporedni in porazdeljeni sistemi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj