Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
How to correctly detect face-masks for COVID-19 from visual information?
ID
Batagelj, Borut
(
Avtor
),
ID
Peer, Peter
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
),
ID
Dobrišek, Simon
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(8,92 MB)
MD5: AE06814466B009475C7C5B9FDB206CF8
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2076-3417/11/5/2070
Galerija slik
Izvleček
The new Coronavirus disease (COVID-19) has seriously affected the world. By the end of November 2020, the global number of new coronavirus cases had already exceeded 60 million and the number of deaths 1,410,378 according to information from the World Health Organization (WHO). To limit the spread of the disease, mandatory face-mask rules are now becoming common in public settings around the world. Additionally, many public service providers require customers to wear face-masks in accordance with predefined rules (e.g., covering both mouth and nose) when using public services. These developments inspired research into automatic (computer-vision-based) techniques for face-mask detection that can help monitor public behavior and contribute towards constraining the COVID-19 pandemic. Although existing research in this area resulted in efficient techniques for face-mask detection, these usually operate under the assumption that modern face detectors provide perfect detection performance (even for masked faces) and that the main goal of the techniques is to detect the presence of face-masks only. In this study, we revisit these common assumptions and explore the following research questions: (i) How well do existing face detectors perform with masked-face images? (ii) Is it possible to detect a proper (regulation-compliant) placement of facial masks? and iii) How useful are existing face-mask detection techniques for monitoring applications during the COVID-19 pandemic? To answer these and related questions we conduct a comprehensive experimental evaluation of several recent face detectors for their performance with masked-face images. Furthermore, we investigate the usefulness of multiple off-the-shelf deep-learning models for recognizing correct face-mask placement. Finally, we design a complete pipeline for recognizing whether face-masks are worn correctly or not and compare the performance of the pipeline with standard face-mask detection models from the literature. To facilitate the study, we compile a large dataset of facial images from the publicly available MAFA and Wider Face datasets and annotate it with compliant and non-compliant labels. The annotation dataset, called Face-Mask-Label Dataset (FMLD), is made publicly available to the research community.
Jezik:
Angleški jezik
Ključne besede:
COVID-19
,
masked-face detection
,
face-mask classification
,
face-mask recognition
,
COVID-19 compliant mask detection
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
24 str.
Številčenje:
Vol. 11, iss. 5, art. 2070
PID:
20.500.12556/RUL-135003
UDK:
004.93:614.89
ISSN pri članku:
2076-3417
DOI:
10.3390/app11052070
COBISS.SI-ID:
53569795
Datum objave v RUL:
16.02.2022
Število ogledov:
968
Število prenosov:
169
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
01.03.2021
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
COVID-19
,
detekcija zakritega obraza
,
klasifikacija obrazne maske
,
razpoznavanje obrazne maske
,
detekcija maske v skladu s COVID-19
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0214
Naslov:
Računalniški vid
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0250
Naslov:
Metrologija in biometrični sistemi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj