izpis_h1_title_alt

Primerjava algoritmov za izračun Fibonaccijevih števil
ID MOČNIK, GAŠPER (Author), ID Mihelič, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (845,07 KB)
MD5: 4CEA1C480929C3A01A9718F2DD2D0B4D

Abstract
V diplomski nalogi so predstavljeni in analizirani načini algoritmičnega izračuna Fibonaccijevih števil. V prvem delu je predstavljeno teoretično ozadje računanja elementov Fibonaccijevega zaporedja in aritmetika v poljubni natančnosti, ki nam omogoča operiranje s števili, ki velikostno presegajo dolžino procesorskih registrov. Opisani so algoritmi, ki temeljijo na osnovni rekurzivni zvezi Fibonaccijevega zaporedja, matrični algoritmi, algoritmi na podlagi Binetove formule in algoritem, ki pri izračunu uporablja binomske koeficiente. V drugem delu so predstavljeni rezultati eksperimentalne primerjave predstavljenih algoritmov, ki smo jih implementirali v programskem jeziku C, za izvajanje aritmetike v poljubni natančnosti pa je bila uporabljena knjižnica GNU MP.

Language:Slovenian
Keywords:Fibonaccijeva števila, aritmetika poljubne natančnosti, časovna zahtevnost, rekurzija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2022
PID:20.500.12556/RUL-134822 This link opens in a new window
COBISS.SI-ID:97925635 This link opens in a new window
Publication date in RUL:03.02.2022
Views:1178
Downloads:102
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of algorithms for computing Fibonacci numbers
Abstract:
In this thesis, we present and analyse ways of algorithmically computing Fibonacci numbers. In the first part we describe theoretical background of computing elements of the Fibonacci sequence. We also describe arbitrary precision arithmetic that allows us to do mathematical operations on numbers that are larger than the length of processor registers. We describe algorithms that are based on the Fibonacci sequence recursive relation, matrix algorithms, algorithms that calculate Binet’s formula and an algorithm that uses binomial coefficients. In the second part we present the results of experimental comparison of the above algorithms which were implemented in C programming language using GNU MP library for arbitrary precision arithmetic.

Keywords:Fibonacci numbers, arbitrary precision arithmetic, time complexity, recursion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back