izpis_h1_title_alt

Določanje elastičnih konstant nematskega tekočega kristala z uporabo nevronskih mrež
ID Zaplotnik, Jaka (Author), ID Ravnik, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,28 MB)
MD5: 2E1315CB06C02818F6A225DA7356FBE6

Abstract
Tri elastične konstante, ki pripadajo trem osnovnim deformacijam orientacijske ureditve molekul nematskega tekočega kristala (pahljačasti, zvojni in upogibni), določajo ravnovesno ureditev in relaksacijsko dinamiko iz neravnovesnega stanja. V magistrskem delu razvijemo novo metodo določanja elastičnih konstant nematskih tekočih kristalov na osnovi kombinacije mezoskopskega numeričnega modeliranja in strojnega učenja nevronskih mrež. Elastične konstante določimo tako, da približno 10⁵-krat z minimizacijo Frank-Oseenove elastične proste energije simuliramo relaksacijo tekočega kristala z naključnimi elastičnimi konstantami iz poljubne začetne konfiguracije direktorja v ravnovesno stanje. Hkrati z uporabo Jonesovega matričnega formalizma izračunavamo intenziteto skozi vzorec prepuščene monokromatske svetlobe. Tako dobljene časovne odvisnosti intenzitete in pripadajoče elastične konstante uporabimo kot učno množico za učenje nevronske mreže, s katero aproksimiramo netrivialno funkcijo, ki iz časovne odvisnosti intenzitete svetlobe napoveduje elastične konstante. V magistrskem delu pokažemo, katere od konstant lahko določimo v značilnih tipih tekočekristalnih celic. Predstavimo še, kako nevronsko mrežo, naučeno s podatki, ki so pridobljeni z numeričnimi simulacijami, lahko uporabimo tudi za napovedovanje elastičnih konstant iz eksperimentalno izmerjenih podatkov. Naše delo prispeva k razvoju uporabe metod strojnega učenja v fiziki mehkih snovi kot novemu močnemu metodološkemu pristopu, posebej v povezavi med modeliranjem in eksperimenti.

Language:Slovenian
Keywords:strojno učenje, nematski tekoči kristal, nevronska mreža, elastične konstante, Frank-Oseenova prosta energija, numerična simulacija, optika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-134367 This link opens in a new window
COBISS.SI-ID:75969283 This link opens in a new window
Publication date in RUL:11.01.2022
Views:1299
Downloads:270
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determining Elastic Constants of Nematic Liquid Crystals Using Neural Networks
Abstract:
In a nematic liquid crystal, three elastic constants related to three deformation modes of the orientational order (splay, twist and bend) govern the orientational configuration in the equilibrium, as well as the leading relaxational dynamics. In this MSc thesis, a new method for determining elastic constants of nematic liquid crystals is developed based on the combination of mesoscopic continuum modelling and neural networks. First, the relaxation from a random initial state of the nematic liquid crystal to the minimum free energy state is numerically simulated 10⁵ times, using Frank-Oseen free energy minimisation for random values of elastic constants. Simultaneously, the transmittance of the nematic sample for monochromatic polarized light is calculated using the Jones matrix formalism. The obtained time-dependent light transmittances and the corresponding elastic constants form a training data set, based on which a neural network is trained, aiming to approximate a nontrivial function that predicts the unknown elastic constants from the time dependence of the intensity of the transmitted light. This allows us to show which elastic constants can be determined in different types of liquid crystal cells and nematic geometries. In addition, we demonstrate that the neural network, which is originally trained on numerically obtained data, can also be used to determine elastic constants from experimentally measured data. Overall, this work contributes towards the development of machine learning methods in the field of general soft matter, as the new strong methodological tools, allowing us to combine theoretical modelling and experimental approaches.

Keywords:machine learning, nematic liquid crystal, neural network, elastic constants, Frank-Oseen free energy, numerical simulation, optics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back