izpis_h1_title_alt

Nadgradnja sistema strojnega vida za kontrolo pozicije vzmeti z metodami globokega učenja
ID GALE, MANCA (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window, ID Grm, Klemen (Comentor)

.pdfPDF - Presentation file, Download (3,04 MB)
MD5: CFA61F475D433292C0C2AD8005FC47CB

Abstract
Pri sestavljanju motorjev na montažni liniji v podjetju Domel prihaja do nepravilnega vstavljanja vzmeti, ki potiska ščetko na komutator. Ob nepravilni poziciji vzmeti lahko pride do krajše življenjske dobe motorja. Pozicija vzmeti se preverja s sistemom strojnega vida, s katerim se zaznava nepravilna pozicija vzmeti. Pri nekaterih tipih motorjev prihaja pri sistemu strojnega vida do nepravilnega razvrščanja. V prvem delu so opisane in preverjene ideje domnevnih vzrokov za napačno razvrščanje. V drugem delu je predstavljena ideja za nadgradnjo sistema strojnega vida za zaznavo nepravilne pozicije vzmeti. Rešitev temelji na iskanju referenčnih točk na segmentiranih področjih vzmeti in vodila ščetke. Za segmentacijo slik smo uporabili metodo učenja konvolucijskega nevronskega omrežja. Kot rešitev težave je predstavljen dodatni algoritem za prepoznavanje slik z nepravilnimi izdelki ter razvrščanje slik s pravilno oziroma nepravilno pozicijo vzmeti glede na razdalje med vzmetjo in vodilom ščetke. Dodatni algoritem upošteva preliminarno razvrstitev obstoječega sistema strojnega vida.

Language:Slovenian
Keywords:segmentacija, konvolucijska nevronska omrežja
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2021
PID:20.500.12556/RUL-134208 This link opens in a new window
COBISS.SI-ID:91407363 This link opens in a new window
Publication date in RUL:29.12.2021
Views:1173
Downloads:110
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Upgrade of the Machine Vision System for Spring Position Control With Deep Learning Methods
Abstract:
When assembling motors on the assembly line at Domel, there is a possible incorrect insertion of a spring, which results to the brush being pushed onto the commutator. Such spring position may lead to a shortening of the motor life span. The position of the spring is checked by a machine vision system, which is used to detects any incorrect position of the spring. This machine vision system may malfunction with certain types of products, which leads to an incorrect classification. The first part of this work describes and verifies our assumptions of the alleged causes of this misclassification. The second part presents our solution to upgrading the machine vision system in order to properly detect incorrect spring positions. This solution is based on finding reference points on segmented areas of the spring and brush guide. For image segmentation, we used a convolution neural network, which was thought to perform the image segmentations. As a solution to the problem, an additional algorithm is presented, which is used for recognizing images with faulty products, as well as sorting images with correct and incorrect spring positions with respect to the distance between the spring and the brush guide. This additional algorithm also takes into account the preliminary classifications of the existing machine vision system.

Keywords:segmentation, convolutional neural network

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back