izpis_h1_title_alt

Analiza dinamike podaj v košarki
ID Sojar, Valentin (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window, ID Vračar, Petar (Comentor)

.pdfPDF - Presentation file, Download (1,13 MB)
MD5: 67F756B75BB617EAEA3CA42C023B5CB6

Abstract
V zadnjih letih je analiza športnih tekem doživela razcvet. Prav to je botrovalo k razvijanju dodatnih statistik ekip ter posameznikov znotraj ekipe. To se je preneslo tudi na košarko, ki je zaradi svoje dinamičnosti zanimiva. Podatkom play-by-play, ki vsebuje podatke o dogodkih v napadu, so dodali tudi prostorsko-časovne podatke, ki vsebujejo podatke o pozicijah žoge in igralcev v danem trenutku. Zanimiva statistika, ki je bila pridobljena iz podatkov, je tudi število podaj med igralci, zaporedje podaj in kakšen vpliv ima podaja na uspešnost napada. V magistrski nalogi je predstavljena analiza, ki preučuje, kako se dinamika podaj in uspešnost ekipe spremeni ob odsotnosti najboljšega igralca. Predstavljena sta dva načina strojnega učenja, hierarhično gručenje, na podalgi grafa podaj med igralnimi položaji in grafa podaj med conami igrišča ter nevronske mreže, kjer se na podlagi prostorsko-časovnih podatkov in podatkov analize grafov podaj napoveduje uspešnost napada. Rezultati kažejo, da so ekipe bolj uspešne, ko je na igrišču njihov najbolši igralec. Pri hierarhičnem gručenju so rezultati pokazali, da podaje med conami igrišča bolje napovejo uspešnost ekipe skozi celotno sezono kot podaje med igralnimi položaji. Nadzorovano učenje je vrnilo 68,25 % točnost pri napovedovanju uspešnosti napada.

Language:Slovenian
Keywords:podatkovno rudarjenje, simulacija tekem, analiziranje podaj
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-134206 This link opens in a new window
COBISS.SI-ID:91634179 This link opens in a new window
Publication date in RUL:29.12.2021
Views:1454
Downloads:90
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of pass dynamics in basketball
Abstract:
In recent years, the analysis of sports matches has flourished, leading to the development of additional statistics on teams and team individuals. This also applies to basketball, a sport that is particularly interesting because of its dynamic character. Spatio-temporal data containing data on ball and player positions at a given point in time have thus been added to the play-by-play data containing data on the events during an attack. Moreover, the number of passes between players, the sequence of passes, and the impact of a pass on the success of an attack represent interesting statistical elements obtained from the data. The master’s thesis provides an analysis examining the changes in pass dynamics and team performance in the absence of the best player. We use two of machine learning approaches: hierarchical clustering, based on the graph of passes between player positions and the graph of passes between court areas, and neural networks, where the success of an attack is predicted based on spatio-temporal data and data obtained from the analyses of pass graphs. The results show that team performance is better when the best player is on the court. What is more important, the results of hierarchical clustering indicate that passes between court areas better predict team performance throughout the season than passes between player positions. The accuracy of supervised learning in predicting the success of an attack was 68,25 %.

Keywords:data mining, game simulation, pass analyisis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back